Suppr超能文献

基于双模态超声图像和临床指标的深度学习驱动的恶性软组织肿瘤诊断

Deep learning driven diagnosis of malignant soft tissue tumors based on dual-modal ultrasound images and clinical indexes.

作者信息

Xie Haiqin, Zhang Yudi, Dong Licong, Lv Heng, Li Xuechen, Zhao Chenyang, Tian Yun, Xie Lu, Wu Wangjie, Yang Qi, Liu Li, Sun Desheng, Qiu Li, Shen Linlin, Zhang Yusen

机构信息

Shenzhen Hospital, Peking University, Shenzhen, China.

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China.

出版信息

Front Oncol. 2024 May 23;14:1361694. doi: 10.3389/fonc.2024.1361694. eCollection 2024.

Abstract

BACKGROUND

Soft tissue tumors (STTs) are benign or malignant superficial neoplasms arising from soft tissues throughout the body with versatile pathological types. Although Ultrasonography (US) is one of the most common imaging tools to diagnose malignant STTs, it still has several drawbacks in STT diagnosis that need improving.

OBJECTIVES

The study aims to establish this deep learning (DL) driven Artificial intelligence (AI) system for predicting malignant STTs based on US images and clinical indexes of the patients.

METHODS

We retrospectively enrolled 271 malignant and 462 benign masses to build the AI system using 5-fold validation. A prospective dataset of 44 malignant masses and 101 benign masses was used to validate the accuracy of system. A multi-data fusion convolutional neural network, named ultrasound clinical soft tissue tumor net (UC-STTNet), was developed to combine gray scale and color Doppler US images and clinic features for malignant STTs diagnosis. Six radiologists (R1-R6) with three experience levels were invited for reader study.

RESULTS

The AI system achieved an area under receiver operating curve (AUC) value of 0.89 in the retrospective dataset. The diagnostic performance of the AI system was higher than that of one of the senior radiologists (AUC of AI vs R2: 0.89 vs. 0.84, =0.022) and all of the intermediate and junior radiologists (AUC of AI vs R3, R4, R5, R6: 0.89 vs 0.75, 0.81, 0.80, 0.63; 0.01). The AI system also achieved an AUC of 0.85 in the prospective dataset. With the assistance of the system, the diagnostic performances and inter-observer agreement of the radiologists was improved (AUC of R3, R5, R6: 0.75 to 0.83, 0.80 to 0.85, 0.63 to 0.69; <0.01).

CONCLUSION

The AI system could be a useful tool in diagnosing malignant STTs, and could also help radiologists improve diagnostic performance.

摘要

背景

软组织肿瘤(STTs)是起源于全身软组织的良性或恶性浅表肿瘤,病理类型多样。尽管超声检查(US)是诊断恶性STTs最常用的影像学工具之一,但在STT诊断中仍存在一些需要改进的缺点。

目的

本研究旨在建立基于US图像和患者临床指标的深度学习(DL)驱动的人工智能(AI)系统,用于预测恶性STTs。

方法

我们回顾性纳入了271个恶性肿块和462个良性肿块,采用5折交叉验证法构建AI系统。使用一个包含44个恶性肿块和101个良性肿块的前瞻性数据集来验证系统的准确性。开发了一种名为超声临床软组织肿瘤网络(UC-STTNet)的多数据融合卷积神经网络,将灰阶和彩色多普勒US图像以及临床特征相结合,用于恶性STTs的诊断。邀请了6位具有三个经验水平的放射科医生(R1-R6)进行阅片研究。

结果

AI系统在回顾性数据集中的受试者工作特征曲线下面积(AUC)值为0.89。AI系统的诊断性能高于一位高级放射科医生(AI与R2的AUC:0.89对0.84,P=0.022)以及所有中级和初级放射科医生(AI与R3、R4、R5、R6的AUC:0.89对0.75、0.81、0.80、0.63;P<0.01)。AI系统在前瞻性数据集中的AUC也达到了0.85。在该系统的辅助下,放射科医生的诊断性能和观察者间一致性得到了提高(R3、R5、R6的AUC:从0.75提高到0.83、从0.80提高到0.85、从0.63提高到0.69;P<0.01)。

结论

AI系统可能是诊断恶性STTs的有用工具,也有助于放射科医生提高诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a71/11153704/40d5cd8a1268/fonc-14-1361694-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验