Université Paris Cité, IAME, INSERM, Paris, France.
Clinical Pharmacometrics, Quantitative Pharmacology, Servier, Suresnes, France.
Stat Med. 2024 Aug 15;43(18):3403-3416. doi: 10.1002/sim.10088. Epub 2024 Jun 7.
Conventional pharmacokinetic (PK) bioequivalence (BE) studies aim to compare the rate and extent of drug absorption from a test (T) and reference (R) product using non-compartmental analysis (NCA) and the two one-sided test (TOST). Recently published regulatory guidance recommends alternative model-based (MB) approaches for BE assessment when NCA is challenging, as for long-acting injectables and products which require sparse PK sampling. However, our previous research on MB-TOST approaches showed that model misspecification can lead to inflated type I error. The objective of this research was to compare the performance of model selection (MS) on R product arm data and model averaging (MA) from a pool of candidate structural PK models in MBBE studies with sparse sampling. Our simulation study was inspired by a real case BE study using a two-way crossover design. PK data were simulated using three structural models under the null hypothesis and one model under the alternative hypothesis. MB-TOST was applied either using each of the five candidate models or following MS and MA with or without the simulated model in the pool. Assuming T and R have the same PK model, our simulation shows that following MS and MA, MB-TOST controls type I error rates at or below 0.05 and attains similar or even higher power than when using the simulated model. Thus, we propose to use MS prior to MB-TOST for BE studies with sparse PK sampling and to consider MA when candidate models have similar Akaike information criterion.
传统的药代动力学(PK)生物等效性(BE)研究旨在使用非房室分析(NCA)和双单侧检验(TOST)比较试验(T)和参比(R)产品的药物吸收速度和程度。最近发布的监管指南建议,当 NCA 具有挑战性时,例如对于长效注射剂和需要稀疏 PK 采样的产品,采用替代基于模型的(MB)方法进行 BE 评估。然而,我们之前关于 MB-TOST 方法的研究表明,模型的不适当选择可能导致 I 型错误率膨胀。本研究的目的是比较在稀疏采样的 MBBE 研究中,基于 R 产品臂数据的模型选择(MS)和从候选结构 PK 模型池中进行模型平均(MA)的性能。我们的模拟研究受到了一项使用两向交叉设计的真实 BE 研究的启发。PK 数据是在零假设下使用三个结构模型模拟的,在替代假设下使用一个模型模拟。MB-TOST 要么使用五个候选模型中的每一个,要么在有或没有模拟模型的情况下根据 MS 和 MA 进行应用。假设 T 和 R 具有相同的 PK 模型,我们的模拟表明,在进行 MS 和 MA 之后,MB-TOST 控制 I 型错误率在 0.05 或以下,并且与使用模拟模型时相比,具有相似甚至更高的功效。因此,我们建议在进行稀疏 PK 采样的 BE 研究时,在进行 MB-TOST 之前使用 MS,并在候选模型具有相似的赤池信息量准则时考虑 MA。