Oxford Internet Institute, University of Oxford, Oxford OX1 2JD, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2403116121. doi: 10.1073/pnas.2403116121. Epub 2024 Jun 7.
Recent advancements in large language models (LLMs) have raised the prospect of scalable, automated, and fine-grained political microtargeting on a scale previously unseen; however, the persuasive influence of microtargeting with LLMs remains unclear. Here, we build a custom web application capable of integrating self-reported demographic and political data into GPT-4 prompts in real-time, facilitating the live creation of unique messages tailored to persuade individual users on four political issues. We then deploy this application in a preregistered randomized control experiment ( = 8,587) to investigate the extent to which access to individual-level data increases the persuasive influence of GPT-4. Our approach yields two key findings. First, messages generated by GPT-4 were broadly persuasive, in some cases increasing support for an issue stance by up to 12 percentage points. Second, in aggregate, the persuasive impact of microtargeted messages was not statistically different from that of non-microtargeted messages (4.83 vs. 6.20 percentage points, respectively, = 0.226). These trends hold even when manipulating the type and number of attributes used to tailor the message. These findings suggest-contrary to widespread speculation-that the influence of current LLMs may reside not in their ability to tailor messages to individuals but rather in the persuasiveness of their generic, nontargeted messages. We release our experimental dataset, , as an empirical baseline for future research.
最近,大型语言模型(LLMs)的发展使得可扩展、自动化和精细化的政治微观定位成为可能,其规模前所未有;然而,LLM 进行微观定位的说服力影响尚不清楚。在这里,我们构建了一个自定义的网络应用程序,能够实时将自我报告的人口统计和政治数据整合到 GPT-4 的提示中,从而方便实时创建针对四个政治问题的独特信息,以说服个人用户。然后,我们在预先注册的随机对照实验(n = 8587)中部署了这个应用程序,以调查访问个人数据的程度是否会增加 GPT-4 的说服力。我们的方法产生了两个关键发现。首先,GPT-4 生成的信息具有广泛的说服力,在某些情况下,最多可以将一个问题的支持率提高 12 个百分点。其次,总体而言,微观定位信息的说服力与非微观定位信息没有统计学上的差异(分别为 4.83%和 6.20%, = 0.226)。即使在操纵用于定制信息的属性的类型和数量时,这些趋势仍然成立。这些发现表明——与广泛的猜测相反——当前 LLM 的影响力不在于其将信息定制到个人的能力,而在于其通用的、非目标信息的说服力。我们发布了我们的实验数据集 ,作为未来研究的经验基准。