Suppr超能文献

使用卷积神经网络和粒子群优化算法进行软件成本估计预测。

Software cost estimation predication using a convolutional neural network and particle swarm optimization algorithm.

作者信息

Draz Moatasem M, Emam Osama, Azzam Safaa M

机构信息

Software Engineering Department, Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt.

Information Systems Department, Faculty of Computers and Artificial Intelligence, Helwan University, Helwan, Egypt.

出版信息

Sci Rep. 2024 Jun 7;14(1):13129. doi: 10.1038/s41598-024-63025-8.

Abstract

Over the past decades, the software industry has expanded to include all industries. Since stakeholders tend to use it to get their work done, software houses seek to estimate the cost of the software, which includes calculating the effort, time, and resources required. Although many researchers have worked to estimate it, the prediction accuracy results are still inaccurate and unstable. Estimating it requires a lot of effort. Therefore, there is an urgent need for modern techniques that contribute to cost estimation. This paper seeks to present a model based on deep learning and machine learning techniques by combining convolutional neural networks (CNN) and the particle swarm algorithm (PSO) in the context of time series forecasting, which enables feature extraction and automatic tuning of hyperparameters, which reduces the manual effort of selecting parameters and contributes to fine-tuning. The use of PSO also enhances the robustness and generalization ability of the CNN model and its iterative nature allows for efficient discovery of hyperparameter similarity. The model was trained and tested on 13 different benchmark datasets and evaluated through six metrics: mean absolute error (MAE), mean square error (MSE), mean magnitude relative error (MMRE), root mean square error (RMSE), median magnitude relative error (MdMRE), and prediction accuracy (PRED). Comparative results reveal that the performance of the proposed model is better than other methods for all datasets and evaluation criteria. The results were very promising for predicting software cost estimation.

摘要

在过去几十年中,软件行业已扩展至涵盖所有行业。由于利益相关者倾向于使用软件来完成工作,软件公司试图估算软件成本,这包括计算所需的工作量、时间和资源。尽管许多研究人员致力于对此进行估算,但预测准确性结果仍然不准确且不稳定。进行估算需要付出大量努力。因此,迫切需要有助于成本估算的现代技术。本文旨在提出一种基于深度学习和机器学习技术的模型,通过在时间序列预测的背景下结合卷积神经网络(CNN)和粒子群算法(PSO),实现特征提取和超参数的自动调整,从而减少手动选择参数的工作量并有助于进行微调。PSO的使用还增强了CNN模型的鲁棒性和泛化能力,其迭代性质允许高效发现超参数的相似性。该模型在13个不同的基准数据集上进行了训练和测试,并通过六个指标进行评估:平均绝对误差(MAE)、均方误差(MSE)、平均幅度相对误差(MMRE)、均方根误差(RMSE)、中位数幅度相对误差(MdMRE)和预测准确率(PRED)。比较结果表明,对于所有数据集和评估标准,所提出模型的性能均优于其他方法。这些结果对于预测软件成本估算非常有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f6/11161658/c7d1411705d3/41598_2024_63025_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验