Suppr超能文献

利用全脑磁共振成像放射组学和机器学习为帕金森病个性化深部脑刺激治疗

Personalizing Deep Brain Stimulation Therapy for Parkinson's Disease With Whole-Brain MRI Radiomics and Machine Learning.

作者信息

Haliasos Nikolaos, Giakoumettis Dimitrios, Gnanaratnasingham Prathishta, Low Hu Liang, Misbahuddin Anjum, Zikos Panagiotis, Sakkalis Vangelis, Cleo Spanaki, Vakis Antonios, Bisdas Sotirios

机构信息

Neurosurgery, Queen's Hospital, Romford, GBR.

Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University, London, GBR.

出版信息

Cureus. 2024 May 8;16(5):e59915. doi: 10.7759/cureus.59915. eCollection 2024 May.

Abstract

Background Deep brain stimulation (DBS) is a well-recognised treatment for advanced Parkinson's disease (PD) patients. Structural brain alterations of the white matter can correlate with disease progression and act as a biomarker for DBS therapy outcomes. This study aims to develop a machine learning-driven predictive model for DBS patient selection using whole-brain white matter radiomics and common clinical variables. Methodology A total of 120 PD patients underwent DBS of the subthalamic nucleus. Their therapy effect was assessed at the one-year follow-up with the Unified Parkinson's Disease Rating Scale-part III (UPDRSIII) motor component. Radiomics analysis of whole-brain white matter was performed with PyRadiomics. The following machine learning methods were used: logistic regression (LR), support vector machine, naïve Bayes, K-nearest neighbours, and random forest (RF) to allow prediction of clinically meaningful UPRDSIII motor response before and after. Clinical variables were also added to the model to improve accuracy. Results The RF model showed the best performance on the final whole dataset with an area under the curve (AUC) of 0.99, accuracy of 0.95, sensitivity of 0.93, and specificity of 0.97. At the same time, the LR model showed an AUC of 0.93, accuracy of 0.88, sensitivity of 0.84, and specificity of 0.91. Conclusions Machine learning models can be used in clinical decision support tools which can deliver true personalised therapy recommendations for PD patients. Clinicians and engineers should choose between best-performing, less interpretable models vs. most interpretable, lesser-performing models. Larger clinical trials would allow to build trust among clinicians and patients to widely use these AI tools in the future.

摘要

背景 深部脑刺激(DBS)是一种被广泛认可的针对晚期帕金森病(PD)患者的治疗方法。脑白质的结构改变与疾病进展相关,并可作为DBS治疗效果的生物标志物。本研究旨在利用全脑白质放射组学和常见临床变量开发一种机器学习驱动的DBS患者选择预测模型。

方法 共有120例PD患者接受了丘脑底核的DBS治疗。在一年随访时,使用统一帕金森病评定量表第三部分(UPDRSIII)运动分量表评估他们的治疗效果。使用PyRadiomics对全脑白质进行放射组学分析。采用了以下机器学习方法:逻辑回归(LR)、支持向量机、朴素贝叶斯、K近邻和随机森林(RF),以预测治疗前后具有临床意义的UPRDSIII运动反应。还将临床变量添加到模型中以提高准确性。

结果 RF模型在最终的整个数据集上表现最佳,曲线下面积(AUC)为0.99,准确率为0.95,灵敏度为0.93,特异性为0.97。同时,LR模型的AUC为0.93,准确率为0.88,灵敏度为0.84,特异性为0.91。

结论 机器学习模型可用于临床决策支持工具,为PD患者提供真正的个性化治疗建议。临床医生和工程师应在性能最佳但较难解释的模型与最易解释但性能稍差的模型之间做出选择。更大规模的临床试验将有助于在临床医生和患者之间建立信任,以便未来广泛使用这些人工智能工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c59c/11161197/f93aaa584cdc/cureus-0016-00000059915-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验