Suppr超能文献

非小细胞肺癌患者的预后因素及预测模型构建:一项回顾性研究

Prognostic factors and predictive model construction in patients with non-small cell lung cancer: a retrospective study.

作者信息

Ma Shixin, Wang Lunqing

机构信息

Dalian Medical University, Dalian, Liaoning, China.

Department of Thoracic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China.

出版信息

Front Oncol. 2024 May 24;14:1378135. doi: 10.3389/fonc.2024.1378135. eCollection 2024.

Abstract

OBJECTIVE

The purpose of this study was to construct a nomogram model based on the general characteristics, histological features, pathological and immunohistochemical results, and inflammatory and nutritional indicators of patients so as to effectively predict the overall survival (OS) and progression-free survival (PFS) of patients with non-small cell lung cancer (NSCLC) after surgery.

METHODS

Patients with NSCLC who received surgical treatment in our hospital from January 2017 to June 2021 were selected as the study subjects. The predictors of OS and PFS were evaluated by univariate and multivariable Cox regression analysis using the Cox proportional risk model. Based on the results of multi-factor Cox proportional risk regression analysis, a nomogram model was established using the R survival package. The bootstrap method (repeated sampling for 1 000 times) was used to internally verify the nomogram model, and C-index was used to represent the prediction performance of the nomogram model. The calibration graph method was used to visually represent its prediction compliance, and decision curve analysis (DCA) was used to evaluate the application value of the model.

RESULTS

Univariate and multivariate analyses were used to identify independent prognostic factors and to construct a nomogram of postoperative survival and disease progression in operable NSCLC patients, with C-index values of 0.927 (907-0.947) and 0.944 (0.922-0.966), respectively. The results showed that the model had high predictive performance. Calibration curves for 1-year, 2-year, and 3-year OS and PFS show a high degree of agreement between the predicted probability and the actual observed probability. In addition, the results of the DCA curve show that the model has good clinical application value.

CONCLUSION

We established a predictive model of survival prognosis and disease progression in patients with non-small cell lung cancer after surgery, which has good predictive performance and can guide clinicians to make the best clinical decision.

摘要

目的

本研究旨在基于患者的一般特征、组织学特征、病理及免疫组化结果以及炎症和营养指标构建列线图模型,以有效预测非小细胞肺癌(NSCLC)患者术后的总生存期(OS)和无进展生存期(PFS)。

方法

选取2017年1月至2021年6月在我院接受手术治疗的NSCLC患者作为研究对象。采用Cox比例风险模型,通过单因素和多因素Cox回归分析评估OS和PFS的预测因素。基于多因素Cox比例风险回归分析结果,使用R生存包建立列线图模型。采用自抽样法(重复抽样1000次)对列线图模型进行内部验证,用C指数表示列线图模型的预测性能。采用校准图法直观表示其预测符合度,并用决策曲线分析(DCA)评估模型的应用价值。

结果

通过单因素和多因素分析确定了独立预后因素,并构建了可手术NSCLC患者术后生存和疾病进展的列线图,C指数值分别为0.927(907 - 0.947)和0.944(0.922 - 0.966)。结果表明该模型具有较高的预测性能。1年、2年和3年OS及PFS的校准曲线显示预测概率与实际观察概率高度一致。此外,DCA曲线结果表明该模型具有良好的临床应用价值。

结论

我们建立了非小细胞肺癌患者术后生存预后和疾病进展的预测模型,该模型具有良好的预测性能,可指导临床医生做出最佳临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eb6/11157049/5949ea95aab0/fonc-14-1378135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验