Department Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Department of Chemistry, Biochemistry Building, University of Oxford, Oxford, United Kingdom.
Elife. 2024 Jun 10;12:RP86722. doi: 10.7554/eLife.86722.
DNA gyrase, a ubiquitous bacterial enzyme, is a type IIA topoisomerase formed by heterotetramerisation of 2 GyrA subunits and 2 GyrB subunits, to form the active complex. DNA gyrase can loop DNA around the C-terminal domains (CTDs) of GyrA and pass one DNA duplex through a transient double-strand break (DSB) established in another duplex. This results in the conversion from a positive (+1) to a negative (-1) supercoil, thereby introducing negative supercoiling into the bacterial genome by steps of 2, an activity essential for DNA replication and transcription. The strong protein interface in the GyrA dimer must be broken to allow passage of the transported DNA segment and it is generally assumed that the interface is usually stable and only opens when DNA is transported, to prevent the introduction of deleterious DSBs in the genome. In this paper, we show that DNA gyrase can exchange its DNA-cleaving interfaces between two active heterotetramers. This so-called interface 'swapping' (IS) can occur within a few minutes in solution. We also show that bending of DNA by gyrase is essential for cleavage but not for DNA binding per se and favors IS. Interface swapping is also favored by DNA wrapping and an excess of GyrB. We suggest that proximity, promoted by GyrB oligomerization and binding and wrapping along a length of DNA, between two heterotetramers favors rapid interface swapping. This swapping does not require ATP, occurs in the presence of fluoroquinolones, and raises the possibility of non-homologous recombination solely through gyrase activity. The ability of gyrase to undergo interface swapping explains how gyrase heterodimers, containing a single active-site tyrosine, can carry out double-strand passage reactions and therefore suggests an alternative explanation to the recently proposed 'swivelling' mechanism for DNA gyrase (Gubaev et al., 2016).
DNA 回旋酶是一种普遍存在的细菌酶,是由 2 个 GyrA 亚基和 2 个 GyrB 亚基异四聚体形成的 IIA 拓扑异构酶,形成活性复合物。DNA 回旋酶可以将 DNA 环化到 GyrA 的 C 端结构域(CTD)周围,并使一个 DNA 双链穿过另一个双链中建立的瞬时双链断裂(DSB)。这导致从正 (+1) 超螺旋到负 (-1) 超螺旋的转化,从而通过 2 的步骤将负超螺旋引入细菌基因组,这是 DNA 复制和转录所必需的。GyrA 二聚体中的强蛋白界面必须断裂,才能允许转运的 DNA 片段通过,通常认为该界面是稳定的,只有在 DNA 转运时才会打开,以防止基因组中引入有害的 DSB。在本文中,我们表明 DNA 回旋酶可以在两个活性异四聚体之间交换其 DNA 切割界面。这种所谓的界面“交换”(IS)可以在溶液中几分钟内发生。我们还表明,DNA 回旋酶对 DNA 的弯曲对于切割至关重要,但对于 DNA 结合本身并不重要,并有利于 IS。IS 也受到 DNA 包裹和 GyrB 过量的青睐。我们认为,两个异四聚体之间由 GyrB 寡聚化和结合以及沿着 DNA 长度的包裹促进的接近有利于快速界面交换。这种交换不需要 ATP,在氟喹诺酮类药物存在下发生,并仅通过回旋酶活性就有可能发生非同源重组。回旋酶进行界面交换的能力解释了为什么含有单个活性酪氨酸的回旋酶异二聚体能够进行双链通过反应,因此为最近提出的 DNA 回旋酶“旋转”机制提供了另一种解释(Gubaev 等人,2016)。