Yang Yanqiao, Winkler Andreas, Karimzadeh Atefeh
Leibniz IFW Dresden, SAWLab Saxony, Institute for Emerging Electronic Technologies (IET), Group "Acoustic Microsystems", Helmholtzstr. 20, 01069 Dresden, Germany.
ACS Appl Mater Interfaces. 2024 Jun 19;16(24):31729-31737. doi: 10.1021/acsami.4c03166. Epub 2024 Jun 10.
Multilayered thin films are essential to most microelectro-mechanical systems (MEMSs). The reliability and predictability of the behavior of such systems, especially when intended for usage at high temperatures or in harsh environments, demand the consideration of thermo-mechanical properties of the individual films of the multilayer arrangement during the design stage. This paper introduces a newly derived analytical model for the convenient indirect determination of the temperature-dependent Young's modulus and the thermally induced stress of individual layers within a multilayered thin film system, i.e., a multilayer-adapted Stoney equation. It is based on sample curvature measurement and requires data from only a single experiment. Experimental and numerical investigations of the new models are carried out using a five-layered sample of a RuAl metallization system developed for wireless high-temperature acoustic sensing. The results highlight the usability of the new model in practical MEMS analysis, enabling insights into complex layer stacks by overcoming current experimental limitations.
多层薄膜对于大多数微机电系统(MEMS)至关重要。此类系统行为的可靠性和可预测性,尤其是在高温或恶劣环境下使用时,要求在设计阶段考虑多层结构中各单层薄膜的热机械性能。本文介绍了一种新推导的分析模型,用于方便地间接确定多层薄膜系统中各层的温度相关杨氏模量和热致应力,即一种适用于多层结构的斯托尼方程。它基于样品曲率测量,仅需单次实验的数据。使用为无线高温声学传感开发的RuAl金属化系统的五层样品对新模型进行了实验和数值研究。结果突出了新模型在实际MEMS分析中的可用性,通过克服当前实验限制,能够深入了解复杂的层堆叠结构。