Suppr超能文献

通过深度学习辅助的无标记光纤拉曼光谱对高级别胶质瘤进行准确快速的分子亚组分类。

Accurate and rapid molecular subgrouping of high-grade glioma via deep learning-assisted label-free fiber-optic Raman spectroscopy.

作者信息

Liu Chang, Wang Jiejun, Shen Jianghao, Chen Xun, Ji Nan, Yue Shuhua

机构信息

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37, Beijing 100191, China.

Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, South Fourth Ring West Road 119, Beijing 100050, China.

出版信息

PNAS Nexus. 2024 May 27;3(6):pgae208. doi: 10.1093/pnasnexus/pgae208. eCollection 2024 Jun.

Abstract

Molecular genetics is highly related with prognosis of high-grade glioma. Accordingly, the latest WHO guideline recommends that molecular subgroups of the genes, including IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, CDKN2A/B, need to be detected to better classify glioma and guide surgery and treatment. Unfortunately, there is no preoperative or intraoperative technology available for accurate and comprehensive molecular subgrouping of glioma. Here, we develop a deep learning-assisted fiber-optic Raman diagnostic platform for accurate and rapid molecular subgrouping of high-grade glioma. Specifically, a total of 2,354 fingerprint Raman spectra was obtained from 743 tissue sites (astrocytoma: 151; oligodendroglioma: 150; glioblastoma (GBM): 442) of 44 high-grade glioma patients. The convolutional neural networks (ResNet) model was then established and optimized for molecular subgrouping. The mean area under receiver operating characteristic curves (AUC) for identifying the molecular subgroups of high-grade glioma reached 0.904, with mean sensitivity of 83.3%, mean specificity of 85.0%, mean accuracy of 83.3%, and mean time expense of 10.6 s. The diagnosis performance using ResNet model was shown to be superior to PCA-SVM and UMAP models, suggesting that high dimensional information from Raman spectra would be helpful. In addition, for the molecular subgroups of GBM, the mean AUC reached 0.932, with mean sensitivity of 87.8%, mean specificity of 83.6%, and mean accuracy of 84.1%. Furthermore, according to saliency maps, the specific Raman features corresponding to tumor-associated biomolecules (e.g. nucleic acid, tyrosine, tryptophan, cholesteryl ester, fatty acid, and collagen) were found to contribute to the accurate molecular subgrouping. Collectively, this study opens up new opportunities for accurate and rapid molecular subgrouping of high-grade glioma, which would assist optimal surgical resection and instant post-operative decision-making.

摘要

分子遗传学与高级别胶质瘤的预后密切相关。因此,世界卫生组织最新指南建议检测包括异柠檬酸脱氢酶(IDH)、1p/19q、O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)、端粒酶逆转录酶(TERT)、表皮生长因子受体(EGFR)、7号/10号染色体、细胞周期蛋白依赖性激酶抑制剂2A/2B(CDKN2A/B)等基因的分子亚组,以更好地对胶质瘤进行分类并指导手术和治疗。遗憾的是,目前尚无术前或术中技术可用于对胶质瘤进行准确、全面的分子亚组分类。在此,我们开发了一种深度学习辅助的光纤拉曼诊断平台,用于对高级别胶质瘤进行准确、快速的分子亚组分类。具体而言,我们从44例高级别胶质瘤患者的743个组织部位(星形细胞瘤:151个;少突胶质细胞瘤:150个;胶质母细胞瘤(GBM):442个)获取了总共2354条指纹拉曼光谱。然后建立并优化了卷积神经网络(ResNet)模型用于分子亚组分类。识别高级别胶质瘤分子亚组的受试者操作特征曲线(AUC)下的平均面积达到0.904,平均灵敏度为83.3%,平均特异性为85.0%,平均准确率为83.3%,平均耗时10.6秒。使用ResNet模型的诊断性能优于主成分分析-支持向量机(PCA-SVM)和均匀流形近似与投影(UMAP)模型,这表明拉曼光谱的高维信息是有帮助的。此外,对于GBM的分子亚组,平均AUC达到0.932,平均灵敏度为87.8%,平均特异性为83.6%,平均准确率为84.1%。此外,根据显著性图,发现与肿瘤相关生物分子(如核酸、酪氨酸、色氨酸、胆固醇酯、脂肪酸和胶原蛋白)相对应的特定拉曼特征有助于准确的分子亚组分类。总的来说,本研究为高级别胶质瘤的准确、快速分子亚组分类开辟了新机会,这将有助于优化手术切除和术后即时决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed59/11164103/b233fcde0060/pgae208f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验