Suppr超能文献

多巴胺亚系统的反馈和前馈网络的作用:研究的启示。

Roles of feedback and feed-forward networks of dopamine subsystems: insights from studies.

机构信息

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

出版信息

Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053807.123. Print 2024 May.

Abstract

Across animal species, dopamine-operated memory systems comprise anatomically segregated, functionally diverse subsystems. Although individual subsystems could operate independently to support distinct types of memory, the logical interplay between subsystems is expected to enable more complex memory processing by allowing existing memory to influence future learning. Recent comprehensive ultrastructural analysis of the mushroom body revealed intricate networks interconnecting the dopamine subsystems-the mushroom body compartments. Here, we review the functions of some of these connections that are beginning to be understood. Memory consolidation is mediated by two different forms of network: A recurrent feedback loop within a compartment maintains sustained dopamine activity required for consolidation, whereas feed-forward connections across compartments allow short-term memory formation in one compartment to open the gate for long-term memory formation in another compartment. Extinction and reversal of aversive memory rely on a similar feed-forward circuit motif that signals omission of punishment as a reward, which triggers plasticity that counteracts the original aversive memory trace. Finally, indirect feed-forward connections from a long-term memory compartment to short-term memory compartments mediate higher-order conditioning. Collectively, these emerging studies indicate that feedback control and hierarchical connectivity allow the dopamine subsystems to work cooperatively to support diverse and complex forms of learning.

摘要

在动物物种中,多巴胺操作的记忆系统包括解剖上分离的、功能多样化的子系统。尽管各个子系统可以独立运作,以支持不同类型的记忆,但预计子系统之间的逻辑相互作用将通过允许现有记忆影响未来学习,从而能够进行更复杂的记忆处理。最近对蘑菇体的全面超微结构分析揭示了连接多巴胺子系统(蘑菇体隔室)的复杂网络。在这里,我们回顾了其中一些连接的功能,这些连接的功能开始被理解。记忆巩固是由两种不同形式的网络介导的:隔室内的一个递归反馈回路维持持续的多巴胺活动,这是巩固所必需的,而隔室之间的前馈连接允许一个隔室中的短期记忆形成,为另一个隔室中的长期记忆形成打开大门。厌恶记忆的消退和反转依赖于类似的前馈电路模式,该模式将惩罚的省略信号作为奖励,触发了对抗原始厌恶记忆痕迹的可塑性。最后,来自长期记忆隔室到短期记忆隔室的间接前馈连接介导了高阶条件作用。总的来说,这些新出现的研究表明,反馈控制和分层连接允许多巴胺子系统协同工作,以支持多样化和复杂的学习形式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0642/11199952/c3dcbfc620a4/LM053807Dav_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验