Department of Computer Science, Princeton University, Princeton, USA.
Center for Computational Mathematics, Flatiron Institute, New York, USA.
Nat Commun. 2024 Jun 11;15(1):4987. doi: 10.1038/s41467-024-49174-4.
Spatial genomic technologies characterize the relationship between the structural organization of cells and their cellular state. Despite the availability of various spatial transcriptomic and proteomic profiling platforms, these experiments remain costly and labor-intensive. Traditionally, tissue slicing for spatial sequencing involves parallel axis-aligned sections, often yielding redundant or correlated information. We propose structured batch experimental design, a method that improves the cost efficiency of spatial genomics experiments by profiling tissue slices that are maximally informative, while recognizing the destructive nature of the process. Applied to two spatial genomics studies-one to construct a spatially-resolved genomic atlas of a tissue and another to localize a region of interest in a tissue, such as a tumor-our approach collects more informative samples using fewer slices compared to traditional slicing strategies. This methodology offers a foundation for developing robust and cost-efficient design strategies, allowing spatial genomics studies to be deployed by smaller, resource-constrained labs.
空间基因组技术可以描述细胞结构组织与其细胞状态之间的关系。尽管有各种空间转录组学和蛋白质组学分析平台,但这些实验仍然昂贵且劳动密集。传统上,用于空间测序的组织切片涉及平行的轴对齐切片,这些切片通常会产生冗余或相关的信息。我们提出了结构化批次实验设计,这是一种通过对信息量最大的组织切片进行分析来提高空间基因组学实验成本效率的方法,同时认识到该过程的破坏性本质。将我们的方法应用于两项空间基因组学研究——一项是构建组织的空间分辨率基因组图谱,另一项是定位组织中的感兴趣区域,如肿瘤——与传统的切片策略相比,我们的方法使用更少的切片收集到了更有信息量的样本。这种方法为开发强大且具有成本效益的设计策略提供了基础,使较小的资源有限的实验室能够部署空间基因组学研究。