Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France.
Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Unit, 75015, Paris, France.
Nat Commun. 2024 Jun 11;15(1):4996. doi: 10.1038/s41467-024-49260-7.
Assessing the impact of SARS-CoV-2 on organelle dynamics allows a better understanding of the mechanisms of viral replication. We combine label-free holotomographic microscopy with Artificial Intelligence to visualize and quantify the subcellular changes triggered by SARS-CoV-2 infection. We study the dynamics of shape, position and dry mass of nucleoli, nuclei, lipid droplets and mitochondria within hundreds of single cells from early infection to syncytia formation and death. SARS-CoV-2 infection enlarges nucleoli, perturbs lipid droplets, changes mitochondrial shape and dry mass, and separates lipid droplets from mitochondria. We then used Bayesian network modeling on organelle dry mass states to define organelle cross-regulation networks and report modifications of organelle cross-regulation that are triggered by infection and syncytia formation. Our work highlights the subcellular remodeling induced by SARS-CoV-2 infection and provides an Artificial Intelligence-enhanced, label-free methodology to study in real-time the dynamics of cell populations and their content.
评估 SARS-CoV-2 对细胞器动态的影响可以更好地理解病毒复制的机制。我们结合无标记全孔径显微镜和人工智能来可视化和量化 SARS-CoV-2 感染引发的亚细胞变化。我们研究了数百个单细胞中从早期感染到合胞体形成和死亡过程中核仁、核、脂滴和线粒体的形状、位置和干质量的动力学。SARS-CoV-2 感染会使核仁增大,扰乱脂滴,改变线粒体的形状和干质量,并使脂滴与线粒体分离。然后,我们使用贝叶斯网络模型对细胞器干质量状态进行分析,以定义细胞器的相互调控网络,并报告感染和合胞体形成引发的细胞器相互调控的变化。我们的工作强调了 SARS-CoV-2 感染引起的亚细胞重塑,并提供了一种人工智能增强的、无标记的方法,用于实时研究细胞群体及其内容的动力学。