MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
CZ Imaging Institute, Redwood City, CA, USA.
Nat Methods. 2024 Jul;21(7):1216-1221. doi: 10.1038/s41592-024-02304-8. Epub 2024 Jun 11.
Macromolecular structure determination by electron cryo-microscopy (cryo-EM) is limited by the alignment of noisy images of individual particles. Because smaller particles have weaker signals, alignment errors impose size limitations on its applicability. Here, we explore how image alignment is improved by the application of deep learning to exploit prior knowledge about biological macromolecular structures that would otherwise be difficult to express mathematically. We train a denoising convolutional neural network on pairs of half-set reconstructions from the electron microscopy data bank (EMDB) and use this denoiser as an alternative to a commonly used smoothness prior. We demonstrate that this approach, which we call Blush regularization, yields better reconstructions than do existing algorithms, in particular for data with low signal-to-noise ratios. The reconstruction of a protein-nucleic acid complex with a molecular weight of 40 kDa, which was previously intractable, illustrates that denoising neural networks will expand the applicability of cryo-EM structure determination for a wide range of biological macromolecules.
通过电子冷冻显微镜(cryo-EM)进行的大分子结构测定受到个体粒子噪声图像对准的限制。由于较小的粒子具有较弱的信号,因此对准误差对其适用性施加了尺寸限制。在这里,我们探索了如何通过将深度学习应用于生物大分子结构的先验知识来改善图像对准,否则这些知识很难用数学方法表达。我们在电子显微镜数据库(EMDB)中的半集重建对上训练去噪卷积神经网络,并将该去噪器用作常用平滑先验的替代方法。我们证明,与现有算法相比,这种我们称为 Blush 正则化的方法可以产生更好的重建效果,特别是对于信噪比低的数据。以前难以处理的 40 kDa 蛋白质 - 核酸复合物的重建表明,去噪神经网络将扩展 cryo-EM 结构测定在广泛的生物大分子中的适用性。