Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Universitat de Girona, Girona, Spain.
Institut d'Investigació Biomèdica de Girona Josep Trueta (IdIBGi), Salt, Spain.
Protein Sci. 2024 Jul;33(7):e5070. doi: 10.1002/pro.5070.
Protein splicing is a self-catalyzed process in which an internal protein domain (the intein) is excised from its flanking sequences, linking them together with a canonical peptide bond. Trans-inteins are separated in two different precursor polypeptide chains that must assemble to catalytically self-excise and ligate the corresponding flanking exteins to join even when expressed separately either in vitro or in vivo. They are very interesting to construct full proteins from separate domains because their common small size favors chemical synthesis approaches. Therefore, trans-inteins have multiple applications such as protein modification and purification, structural characterization of protein domains or production of intein-based biosensors, among others. For many of these applications, when using more than one trans-intein, orthogonality between them is a critical issue to ensure the proper ligation of the exteins. Here, we confirm the orthogonality (lack of cross-reactivity) of four different trans- or split inteins, gp41-1, gp41-8, IMPDH-1 and NrdJ-1 both in vivo and in vitro, and built different constructs that allow for the sequential fusion of up to four protein fragments into one final spliced product. We have characterized the splicing efficiency of these constructs. All harbor non-native extein residues at the splice junction between the trans-intein and the neighboring exteins, except for the essential Ser + 1. Our results show that it is possible to ligate four different protein domains using inteins gp41-1, IMPDH-1 and NrdJ-1 with non-native extein residues to obtain a final four-domain spliced product with a not negligible yield that keeps its native sequence.
蛋白质剪接是一种自我催化的过程,其中内部蛋白质结构域(内含子)从其侧翼序列中被切除,将它们通过典型的肽键连接在一起。反式内含子存在于两个不同的前体多肽链中,这两个前体多肽链必须组装在一起才能进行催化自我切除,并将相应的侧翼外显子连接起来,即使在体外或体内分别表达时也是如此。它们在构建来自不同结构域的完整蛋白质时非常有趣,因为它们的共同小尺寸有利于化学合成方法。因此,反式内含子具有多种应用,例如蛋白质修饰和纯化、蛋白质结构域的结构特征分析或基于内含子的生物传感器的生产等。对于许多这些应用,当使用多个反式内含子时,它们之间的正交性(缺乏交叉反应性)是确保外显子正确连接的关键问题。在这里,我们在体内和体外都证实了四个不同的反式或分裂内含子 gp41-1、gp41-8、IMPDH-1 和 NrdJ-1 的正交性(缺乏交叉反应性),并构建了不同的构建体,允许将多达四个蛋白质片段依次融合到一个最终剪接产物中。我们已经对这些构建体的剪接效率进行了表征。除了必需的 Ser + 1 外,所有构建体在反式内含子和相邻外显子之间的剪接连接处都含有非天然的外显子残基。我们的结果表明,使用 gp41-1、IMPDH-1 和 NrdJ-1 这三种内含子以及具有非天然外显子残基的外显子,有可能将四个不同的蛋白质结构域连接起来,获得具有不可忽视产率的最终四结构域剪接产物,且保留其天然序列。