Department of Ophthalmology, University of Washington, Seattle, WA, United States.
The Roger and Angie Karalis Retina Center, Seattle, Washington, United States.
Invest Ophthalmol Vis Sci. 2024 Jun 3;65(6):21. doi: 10.1167/iovs.65.6.21.
Data is the cornerstone of using AI models, because their performance directly depends on the diversity, quantity, and quality of the data used for training. Using AI presents unique potential, particularly in medical applications that involve rich data such as ophthalmology, encompassing a variety of imaging methods, medical records, and eye-tracking data. However, sharing medical data comes with challenges because of regulatory issues and privacy concerns. This review explores traditional and nontraditional data sharing methods in medicine, focusing on previous works in ophthalmology. Traditional methods involve direct data transfer, whereas newer approaches prioritize security and privacy by sharing derived datasets, creating secure research environments, or using model-to-data strategies. We examine each method's mechanisms, variations, recent applications in ophthalmology, and their respective advantages and disadvantages. By empowering medical researchers with insights into data sharing methods and considerations, this review aims to assist informed decision-making while upholding ethical standards and patient privacy in medical AI development.
数据是使用 AI 模型的基石,因为它们的性能直接取决于用于训练的数据的多样性、数量和质量。使用 AI 具有独特的潜力,特别是在涉及丰富数据的医学应用中,如眼科,包括各种成像方法、医疗记录和眼动追踪数据。然而,由于监管问题和隐私问题,共享医疗数据存在挑战。本综述探讨了医学中传统和非传统的数据共享方法,重点关注了以前在眼科领域的工作。传统方法涉及直接的数据传输,而较新的方法则通过共享派生数据集、创建安全的研究环境或使用模型到数据的策略来优先考虑安全性和隐私性。我们检查了每种方法的机制、变体、在眼科中的最新应用以及各自的优缺点。通过为医学研究人员提供有关数据共享方法和注意事项的见解,本综述旨在帮助他们在遵守伦理标准和保护患者隐私的前提下,在医学 AI 开发中做出明智的决策。