Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; SAEF: Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia.
Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
Cell. 2024 Jun 20;187(13):3357-3372.e19. doi: 10.1016/j.cell.2024.05.032. Epub 2024 Jun 11.
Microbial hydrogen (H) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H-metabolizing enzymes.
微生物氢(H)循环是多种缺氧生态系统多样性和功能的基础。在负责的三个进化上截然不同的氢化酶超家族中,[FeFe]氢化酶被认为仅限于细菌和真核生物。在这里,我们通过结合现有和新基因组的分析以及广泛的生化实验,表明厌氧古菌通过组合分析现有和新基因组以及广泛的生化实验,编码了多样的、活跃的和古老的[FeFe]氢化酶谱系。[FeFe]氢化酶由 9 个古菌门的基因组编码,并由产生 H 的 Asgard 古菌培养物表达。我们报告了 DPANN 古菌中一种超微小的氢化酶,它结合了催化 H 簇并产生 H。此外,我们鉴定并表征了通过融合[FeFe]和[NiFe]氢化酶在其他 10 个古菌目形成的显著杂交复合物。系统发育分析和结构建模表明,杂交氢化酶具有深远的进化历史。这些发现揭示了古菌的新代谢适应、用于生物技术开发的简化 H 催化剂,以及两种主要 H 代谢酶之间令人惊讶的交织进化历史。