Maršík Dominik, Maťátková Olga, Kolková Anna, Masák Jan
Department of Biotechnology, University of Chemistry and Technology Technická 5, Prague 6 Prague 166 28 Czechia
Nanoscale Adv. 2024 Apr 22;6(12):3093-3105. doi: 10.1039/d4na00064a. eCollection 2024 Jun 11.
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L within tested strains. Additionally, we identified a concentration of 5 mg L that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing infections and underscores the multifaceted nature of their antimicrobial effects.
细菌中日益严重的抗生素耐药性对社会构成了重大威胁,全球耐药菌株的流行率正在上升。应对这一挑战需要探索能够补充现有抗菌药物的策略,即通过能够减轻细菌毒力而不会引发耐药性产生的选择性压力的物质来实现。在这方面,游离形式的壳聚糖已显示出有前景的效果,促使我们研究通过纳米颗粒制剂增强其效果。我们的研究重点是在合适的条件下制备壳聚糖纳米颗粒,同时强调与稳定性相关的挑战,这些挑战可能会影响生物活性。通过引入季铵化壳聚糖来缓解这些挑战,这确保了在培养基中的胶体稳定性。我们的方法导致制备出中位粒径为103nm、圆度为0.967、电荷为14.9±3.1mV的三甲基壳聚糖纳米颗粒,在水储备溶液中一个月内保持稳定,显示出有进一步应用价值的有前景的特性。此外,该研究深入探讨了三甲基壳聚糖纳米颗粒对[具体细菌名称未给出]的抗菌活性,并证实了壳聚糖纳米制剂和改性的益处,因为我们制备的纳米颗粒在测试菌株中浓度≥160mg/L时可抑制50%的细菌群体。此外,我们确定了5mg/L的浓度不再阻碍细菌生长,从而能够可靠地验证制备的纳米颗粒对[具体细菌名称未给出]毒力因子的影响,包括运动性、蛋白酶活性、溶血活性、鼠李糖脂、绿脓菌素和生物膜形成。尽管三甲基壳聚糖纳米颗粒作为一种有效的抗生物膜剂显示出前景(在80至160mg/L的浓度范围内可将生物膜形成减少50%),但其对毒力表现的影响可能与群体感应没有直接关联。相反,这可能归因于与细菌表面的非特异性相互作用。这一探索为季铵化壳聚糖纳米颗粒在应对[具体细菌名称未给出]感染方面的潜力提供了有价值的见解,并强调了其抗菌作用的多方面性质。