Suppr超能文献

基于解剖注意力融合网络的大脑皮质下分割工具,用于开发猕猴。

A brain subcortical segmentation tool based on anatomy attentional fusion network for developing macaques.

机构信息

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, China.

Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.

出版信息

Comput Med Imaging Graph. 2024 Sep;116:102404. doi: 10.1016/j.compmedimag.2024.102404. Epub 2024 May 25.

Abstract

Magnetic Resonance Imaging (MRI) plays a pivotal role in the accurate measurement of brain subcortical structures in macaques, which is crucial for unraveling the complexities of brain structure and function, thereby enhancing our understanding of neurodegenerative diseases and brain development. However, due to significant differences in brain size, structure, and imaging characteristics between humans and macaques, computational tools developed for human neuroimaging studies often encounter obstacles when applied to macaques. In this context, we propose an Anatomy Attentional Fusion Network (AAF-Net), which integrates multimodal MRI data with anatomical constraints in a multi-scale framework to address the challenges posed by the dynamic development, regional heterogeneity, and age-related size variations of the juvenile macaque brain, thus achieving precise subcortical segmentation. Specifically, we generate a Signed Distance Map (SDM) based on the initial rough segmentation of the subcortical region by a network as an anatomical constraint, providing comprehensive information on positions, structures, and morphology. Then we construct AAF-Net to fully fuse the SDM anatomical constraints and multimodal images for refined segmentation. To thoroughly evaluate the performance of our proposed tool, over 700 macaque MRIs from 19 datasets were used in this study. Specifically, we employed two manually labeled longitudinal macaque datasets to develop the tool and complete four-fold cross-validations. Furthermore, we incorporated various external datasets to demonstrate the proposed tool's generalization capabilities and promise in brain development research. We have made this tool available as an open-source resource at https://github.com/TaoZhong11/Macaque_subcortical_segmentation for direct application.

摘要

磁共振成像(MRI)在准确测量猕猴大脑皮质下结构方面发挥着关键作用,这对于揭示大脑结构和功能的复杂性至关重要,从而增强我们对神经退行性疾病和大脑发育的理解。然而,由于人类和猕猴大脑在大小、结构和成像特征方面存在显著差异,为人类神经影像学研究开发的计算工具在应用于猕猴时常常遇到障碍。在这种情况下,我们提出了一种解剖注意力融合网络(AAF-Net),该网络在多尺度框架中将多模态 MRI 数据与解剖约束相结合,以解决幼年猕猴大脑动态发育、区域异质性和与年龄相关的大小变化所带来的挑战,从而实现精确的皮质下分割。具体来说,我们基于网络对皮质下区域的初始粗略分割生成一个Signed Distance Map(SDM)作为解剖约束,提供位置、结构和形态的全面信息。然后,我们构建 AAF-Net 以充分融合 SDM 解剖约束和多模态图像进行精细分割。为了彻底评估我们提出的工具的性能,本研究使用了来自 19 个数据集的超过 700 个猕猴 MRI。具体来说,我们使用了两个手动标记的纵向猕猴数据集来开发该工具,并完成了四折交叉验证。此外,我们还整合了各种外部数据集,以展示该工具在大脑发育研究中的泛化能力和潜力。我们已将该工具作为开源资源发布在 https://github.com/TaoZhong11/Macaque_subcortical_segmentation,以供直接应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验