Mohammadian Rad Nastaran, Sosef Odin, Seegers Jord, Koolen Laura J E R, Hoofwijk Julie J W A, Woodruff Henry C, Hoofwijk Ton A G M, Sosef Meindert, Lambin Philippe
The D-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, Netherlands.
Department of Surgery, Zuyderland Medisch Centrum, Sittard-Geleen, Netherlands.
Front Oncol. 2024 May 30;14:1368120. doi: 10.3389/fonc.2024.1368120. eCollection 2024.
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. A considerable percentage of patients who undergo surgery with curative intent will experience cancer recurrence. Early identification of individuals with a higher risk of recurrence is crucial for healthcare professionals to intervene promptly and devise appropriate treatment strategies. In this study, we developed prognostic models for CRC recurrence using machine learning models on a limited number of CEA measurements.
A dataset of 1927 patients diagnosed with Stage I-III CRC and referred to Zuyderland Hospital for surgery between 2008 and 2016 was utilized. Machine learning models were trained using this comprehensive dataset, which included demographic details, clinicopathological factors, and serial measurements of Carcinoembryonic Antigen (CEA). In this study, the predictive performance of these models was assessed, and the key prognostic factors influencing colorectal cancer (CRC) recurrence were pinpointed.
Among the evaluated models, the gradient boosting classifier demonstrated superior performance, achieving an Area Under the Curve (AUC) score of 0.81 and a balanced accuracy rate of 0.73. Recurrence prediction was shown to be feasible with an AUC of 0.71 when using only five post-operative CEA measurements. Furthermore, key factors influencing recurrence were identified and elucidated.
This study shows the transformative role of machine learning in recurrence prediction for CRC, particularly by investigating the minimum number of CEA measurements required for effective recurrence prediction. This approach not only contributes to the optimization of clinical workflows but also facilitates the development of more effective, individualized treatment plans, thereby laying the groundwork for future advancements in this area. Future directions involve validating these models in larger and more diverse cohorts. Building on these efforts, our ultimate goal is to develop a risk-based follow-up strategy that can improve patient outcomes and enhance healthcare efficiency.
结直肠癌(CRC)是全球最常见的癌症之一。相当一部分接受根治性手术的患者会出现癌症复发。早期识别复发风险较高的个体对于医疗保健专业人员及时干预并制定适当的治疗策略至关重要。在本研究中,我们使用机器学习模型基于有限数量的癌胚抗原(CEA)测量值开发了CRC复发的预后模型。
利用了一个包含1927例在2008年至2016年间被诊断为I - III期CRC并转诊至祖德兰德医院进行手术的患者的数据集。使用这个综合数据集训练机器学习模型,该数据集包括人口统计学细节、临床病理因素以及癌胚抗原(CEA)的系列测量值。在本研究中,评估了这些模型的预测性能,并确定了影响结直肠癌(CRC)复发的关键预后因素。
在评估的模型中,梯度提升分类器表现出卓越的性能,曲线下面积(AUC)得分为0.81,平衡准确率为0.73。仅使用术后五次CEA测量值时,复发预测的AUC为0.71,表明复发预测是可行的。此外,还识别并阐明了影响复发的关键因素。
本研究展示了机器学习在CRC复发预测中的变革性作用,特别是通过研究有效复发预测所需的最少CEA测量次数。这种方法不仅有助于优化临床工作流程,还促进了更有效、个性化治疗方案的制定,从而为该领域的未来发展奠定了基础。未来的方向包括在更大、更多样化的队列中验证这些模型。基于这些努力,我们的最终目标是制定一种基于风险的随访策略,以改善患者预后并提高医疗效率。