School of Medicine, Department of Radiation Oncology and Medical Physics, Stanford University, Stanford, CA 94305, USA.
School of Medicine, Department of Radiological Sciences, Stanford University, Stanford, CA 94305, USA.
Sci Adv. 2024 Jun 14;10(24):eadk5747. doi: 10.1126/sciadv.adk5747.
In vivo molecular imaging tools are crucially important for elucidating how cells move through complex biological systems; however, achieving single-cell sensitivity over the entire body remains challenging. Here, we report a highly sensitive and multiplexed approach for tracking upward of 20 single cells simultaneously in the same subject using positron emission tomography (PET). The method relies on a statistical tracking algorithm (PEPT-EM) to achieve a sensitivity of 4 becquerel per cell and a streamlined workflow to reliably label single cells with over 50 becquerel per cell of F-fluorodeoxyglucose (FDG). To demonstrate the potential of the method, we tracked the fate of more than 70 melanoma cells after intracardiac injection and found they primarily arrested in the small capillaries of the pulmonary, musculoskeletal, and digestive organ systems. This study bolsters the evolving potential of PET in offering unmatched insights into the earliest phases of cell trafficking in physiological and pathological processes and in cell-based therapies.
在体分子成像工具对于阐明细胞如何穿过复杂的生物系统至关重要;然而,在整个身体范围内实现单细胞灵敏度仍然具有挑战性。在这里,我们报告了一种高度敏感和多路复用的方法,用于使用正电子发射断层扫描 (PET) 在同一对象中同时跟踪多达 20 个单细胞。该方法依赖于统计跟踪算法 (PEPT-EM) 来实现每细胞 4 贝克勒尔的灵敏度,并采用简化的工作流程,可使用超过 50 贝克勒尔每细胞的 F-氟脱氧葡萄糖 (FDG) 可靠地标记单细胞。为了展示该方法的潜力,我们跟踪了超过 70 个黑色素瘤细胞在心内注射后的命运,发现它们主要在肺、肌肉骨骼和消化器官系统的小毛细血管中停滞。这项研究增强了 PET 在提供对生理和病理过程以及基于细胞的治疗中细胞迁移的最早阶段的无与伦比的见解方面的不断发展的潜力。