Department of Earth System Science, Stanford University, Stanford, California 94305, United States.
Institut des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, Lausanne 1015, Switzerland.
Environ Sci Technol. 2024 Jul 2;58(26):11459-11469. doi: 10.1021/acs.est.4c01882. Epub 2024 Jun 14.
Anoxic microsites are potentially important but unresolved contributors to soil organic carbon (C) storage. How anoxic microsites vary with soil management and the degree to which anoxic microsites contribute to soil C stabilization remain unknown. Sampling from four long-term agricultural experiments in the central United States, we examined how anoxic microsites varied with management (e.g., cultivation, tillage, and manure amendments) and whether anoxic microsites determine soil C concentration in surface (0-15 cm) soils. We used a novel approach to track anaerobe habitat space and, hence, anoxic microsites using DNA copies of anaerobic functional genes over a confined volume of soil. No-till practices inconsistently increased anoxic microsite extent compared to conventionally tilled soils, and within one site organic matter amendments increased anaerobe abundance in no-till soils. Across all long-term tillage trials, uncultivated soils had ∼2-4 times more copies of anaerobic functional genes than their cropland counterparts. Finally, anaerobe abundance was positively correlated to soil C concentration. Even when accounting for other soil C protection mechanisms, anaerobe abundance, our proxy for anoxic microsites, explained 41% of the variance and 5% of the unique variance in soil C concentration in cropland soils, making anoxic microsites the strongest management-responsive predictor of soil C concentration. Our results suggest that careful management of anoxic microsites may be a promising strategy to increase soil C storage within agricultural soils.
缺氧微区是土壤有机碳(C)储存的一个重要但尚未解决的贡献因素。缺氧微区如何随土壤管理而变化,以及缺氧微区在多大程度上有助于土壤 C 稳定仍然未知。本研究从美国中部的四个长期农业实验中采样,研究了缺氧微区如何随管理(如耕作、耕作和有机肥改良)而变化,以及缺氧微区是否决定了表层(0-15cm)土壤的土壤 C 浓度。我们使用一种新方法来跟踪厌氧菌栖息地空间,从而跟踪缺氧微区,方法是在土壤的有限体积内使用厌氧功能基因的 DNA 拷贝。与传统耕作土壤相比,免耕措施不一致地增加了缺氧微区的范围,而在一个地点,有机物质改良增加了免耕土壤中厌氧菌的丰度。在所有长期耕作试验中,未耕作土壤中的厌氧功能基因拷贝数比其耕地土壤高约 2-4 倍。最后,厌氧菌丰度与土壤 C 浓度呈正相关。即使考虑到其他土壤 C 保护机制,厌氧菌丰度(我们缺氧微区的代理)解释了耕地土壤中土壤 C 浓度的 41%的方差和 5%的独特方差,使缺氧微区成为土壤 C 浓度的最强管理响应预测因子。我们的研究结果表明,仔细管理缺氧微区可能是增加农业土壤中土壤 C 储存的一种有前途的策略。