Nagra Harpreet, Goel Aradhana, Goldner Dan
One Drop, New York, NY, United States.
Integrated Care, Bayer Pharmaceuticals, San Francisco, CA, United States.
JMIR Biomed Eng. 2022 Feb 10;7(1):e29499. doi: 10.2196/29499.
The COVID-19 pandemic has illuminated multiple challenges within the health care system and is unique to those living with chronic conditions. Recent advances in digital health technologies (eHealth) present opportunities to improve quality of care, self-management, and decision-making support to reduce treatment burden and the risk of chronic condition management burnout. There are limited available eHealth models that can adequately describe how this can be carried out. In this paper, we define treatment burden and the related risk of affective burnout; assess how an eHealth enhanced Chronic Care Model can help prioritize digital health solutions; and describe an emerging machine learning model as one example aimed to alleviate treatment burden and burnout risk. We propose that eHealth-driven machine learning models can be a disruptive change to optimally support persons living with chronic conditions.
新冠疫情暴露了医疗保健系统中的多重挑战,对于慢性病患者而言更是如此。数字健康技术(电子健康)的最新进展为改善护理质量、自我管理以及决策支持提供了机会,以减轻治疗负担和慢性病管理倦怠的风险。目前可用的电子健康模型有限,无法充分描述如何实现这一点。在本文中,我们定义了治疗负担以及情感倦怠的相关风险;评估电子健康增强型慢性病护理模型如何有助于确定数字健康解决方案的优先级;并描述一种新兴的机器学习模型,作为旨在减轻治疗负担和倦怠风险的一个例子。我们认为,由电子健康驱动的机器学习模型可能是一种颠覆性变革,能够为慢性病患者提供最佳支持。