Suppr超能文献

使用机器学习减轻慢性病患者的治疗负担:观点

Reducing Treatment Burden Among People With Chronic Conditions Using Machine Learning: Viewpoint.

作者信息

Nagra Harpreet, Goel Aradhana, Goldner Dan

机构信息

One Drop, New York, NY, United States.

Integrated Care, Bayer Pharmaceuticals, San Francisco, CA, United States.

出版信息

JMIR Biomed Eng. 2022 Feb 10;7(1):e29499. doi: 10.2196/29499.

Abstract

The COVID-19 pandemic has illuminated multiple challenges within the health care system and is unique to those living with chronic conditions. Recent advances in digital health technologies (eHealth) present opportunities to improve quality of care, self-management, and decision-making support to reduce treatment burden and the risk of chronic condition management burnout. There are limited available eHealth models that can adequately describe how this can be carried out. In this paper, we define treatment burden and the related risk of affective burnout; assess how an eHealth enhanced Chronic Care Model can help prioritize digital health solutions; and describe an emerging machine learning model as one example aimed to alleviate treatment burden and burnout risk. We propose that eHealth-driven machine learning models can be a disruptive change to optimally support persons living with chronic conditions.

摘要

新冠疫情暴露了医疗保健系统中的多重挑战,对于慢性病患者而言更是如此。数字健康技术(电子健康)的最新进展为改善护理质量、自我管理以及决策支持提供了机会,以减轻治疗负担和慢性病管理倦怠的风险。目前可用的电子健康模型有限,无法充分描述如何实现这一点。在本文中,我们定义了治疗负担以及情感倦怠的相关风险;评估电子健康增强型慢性病护理模型如何有助于确定数字健康解决方案的优先级;并描述一种新兴的机器学习模型,作为旨在减轻治疗负担和倦怠风险的一个例子。我们认为,由电子健康驱动的机器学习模型可能是一种颠覆性变革,能够为慢性病患者提供最佳支持。

相似文献

6
eHealth in pediatric respiratory allergy.
Curr Opin Allergy Clin Immunol. 2024 Dec 1;24(6):536-542. doi: 10.1097/ACI.0000000000001027. Epub 2024 Sep 13.

本文引用的文献

1
Impact of the COVID-19 Pandemic on Primary Health Care Disease Incidence Rates: 2017 to 2020.
Ann Fam Med. 2022 Jan-Feb;20(1):63-68. doi: 10.1370/afm.2731. Epub 2021 Sep 24.
2
Innovative methods for observing and changing complex health behaviors: four propositions.
Transl Behav Med. 2021 Mar 16;11(2):676-685. doi: 10.1093/tbm/ibaa026.
3
Organizing Care for Patients With Chronic Illness Revisited.
Milbank Q. 2019 Sep;97(3):659-664. doi: 10.1111/1468-0009.12416. Epub 2019 Aug 19.
5
The eHealth Enhanced Chronic Care Model: a theory derivation approach.
J Med Internet Res. 2015 Apr 1;17(4):e86. doi: 10.2196/jmir.4067.
6
Joint effect of chronic medical illness and burnout on depressive symptoms among employed adults.
Health Psychol. 2014 Mar;33(3):264-72. doi: 10.1037/a0033712. Epub 2013 Jul 29.
7
Treatment burden among people with chronic illness: what are consumer health organizations saying?
Chronic Illn. 2013 Sep;9(3):220-32. doi: 10.1177/1742395312463411. Epub 2012 Oct 23.
9
Integrating systematic chronic care for diabetes into an academic general internal medicine resident-faculty practice.
J Gen Intern Med. 2008 Nov;23(11):1749-56. doi: 10.1007/s11606-008-0751-5. Epub 2008 Aug 28.
10
Impact of generalist care managers on patients with diabetes.
Health Serv Res. 2005 Oct;40(5 Pt 1):1400-21. doi: 10.1111/j.1475-6773.2005.00423.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验