Suppr超能文献

基于机器学习引导的信号富集的超高灵敏血浆肿瘤负担监测。

Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.

机构信息

New York Genome Center, New York, NY, USA.

Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nat Med. 2024 Jun;30(6):1655-1666. doi: 10.1038/s41591-024-03040-4. Epub 2024 Jun 14.

Abstract

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.

摘要

在实体肿瘤肿瘤学中,循环肿瘤 DNA(ctDNA)有望通过对微小残留病灶(MRD)的准确评估和治疗反应监测来改变治疗方式。为了克服低肿瘤分数(TF)环境中 ctDNA 片段的稀疏性并提高 MRD 灵敏度,我们之前利用血浆全基因组测序(WGS)整合了全基因组突变。在此,我们现在引入了 MRD-EDGE,这是一个基于机器学习的 WGS ctDNA 单核苷酸变异(SNV)和拷贝数变异(CNV)检测平台,旨在增加信号富集。MRD-EDGE 使用深度学习和 ctDNA 特异性特征空间,与之前的 WGS 错误抑制相比,将 WGS 中的 SNV 信号噪声比提高了约 300 倍。MRD-EDGE 还通过 WGS 将超灵敏 CNV 检测所需的非整倍体程度从 1Gb 降低到 200Mb,从而极大地扩展了其在实体肿瘤中的适用性。我们利用改进的性能在多种癌症类型中识别手术后的 MRD,跟踪肺癌新辅助免疫治疗中 TF 的变化,并证明了癌前结直肠腺瘤中的 ctDNA 脱落。最后,MRD-EDGE 的激进信号噪声比使高级黑色素瘤和肺癌能够仅通过血浆(非肿瘤信息)进行疾病监测,为接受免疫检查点抑制的患者提供了有临床意义的 TF 监测。

相似文献

1
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.
Nat Med. 2024 Jun;30(6):1655-1666. doi: 10.1038/s41591-024-03040-4. Epub 2024 Jun 14.
3
Whole-genome Mutational Analysis for Tumor-informed Detection of Circulating Tumor DNA in Patients with Urothelial Carcinoma.
Eur Urol. 2024 Oct;86(4):301-311. doi: 10.1016/j.eururo.2024.05.014. Epub 2024 May 29.
4
Whole genome sequencing-powered ctDNA sequencing for breast cancer detection.
Ann Oncol. 2025 Jun;36(6):673-681. doi: 10.1016/j.annonc.2025.01.021. Epub 2025 Feb 4.
6
Whole-genome sequencing of cell-free DNA reveals DNA of tumor origin in plasma from patients with colorectal adenomas.
Mol Oncol. 2025 Apr;19(4):984-993. doi: 10.1002/1878-0261.13803. Epub 2025 Jan 20.
7
Minimal residual disease in colorectal cancer. Tumor-informed versus tumor-agnostic approaches: unraveling the optimal strategy.
Ann Oncol. 2025 Mar;36(3):263-276. doi: 10.1016/j.annonc.2024.12.006. Epub 2024 Dec 13.
9
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.
Clin Orthop Relat Res. 2025 Jan 1;483(1):39-48. doi: 10.1097/CORR.0000000000003161. Epub 2024 Jun 21.
10
Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring.
Nat Med. 2020 Jul;26(7):1114-1124. doi: 10.1038/s41591-020-0915-3. Epub 2020 Jun 1.

引用本文的文献

3
Improvement of the sensitivity of circulating tumor DNA-based liquid biopsy: current approaches and future perspectives.
Explor Target Antitumor Ther. 2025 Aug 8;6:1002333. doi: 10.37349/etat.2025.1002333. eCollection 2025.
5
International society of liquid biopsy (ISLB) perspective on minimal requirements for ctDNA testing in solid tumors.
J Liq Biopsy. 2025 May 24;8:100301. doi: 10.1016/j.jlb.2025.100301. eCollection 2025 Jun.
7
Advances in molecular pathology and therapy of non-small cell lung cancer.
Signal Transduct Target Ther. 2025 Jun 15;10(1):186. doi: 10.1038/s41392-025-02243-6.
8
Promises and pitfalls of multi-cancer early detection using liquid biopsy tests.
Nat Rev Clin Oncol. 2025 Jun 13. doi: 10.1038/s41571-025-01033-x.
9
Research trends and hotspots of circulating tumor DNA in colorectal cancer: a bibliometric study.
Front Oncol. 2025 May 14;15:1492880. doi: 10.3389/fonc.2025.1492880. eCollection 2025.
10
The predictive power of profiling the DNA methylome in human health and disease.
Epigenomics. 2025 Jun;17(9):599-610. doi: 10.1080/17501911.2025.2500907. Epub 2025 May 10.

本文引用的文献

1
Single-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancer.
Nat Genet. 2023 Aug;55(8):1301-1310. doi: 10.1038/s41588-023-01446-3. Epub 2023 Jul 27.
2
Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer.
Nat Med. 2023 Jan;29(1):127-134. doi: 10.1038/s41591-022-02115-4. Epub 2023 Jan 16.
5
Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer.
N Engl J Med. 2022 Jun 16;386(24):2261-2272. doi: 10.1056/NEJMoa2200075. Epub 2022 Jun 4.
6
Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth.
Nat Biomed Eng. 2022 Mar;6(3):257-266. doi: 10.1038/s41551-022-00855-9. Epub 2022 Mar 17.
7
Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab.
Nat Cancer. 2020 Sep;1(9):873-881. doi: 10.1038/s43018-020-0096-5. Epub 2020 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验