New York Genome Center, New York, NY, USA.
Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nat Med. 2024 Jun;30(6):1655-1666. doi: 10.1038/s41591-024-03040-4. Epub 2024 Jun 14.
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
在实体肿瘤肿瘤学中,循环肿瘤 DNA(ctDNA)有望通过对微小残留病灶(MRD)的准确评估和治疗反应监测来改变治疗方式。为了克服低肿瘤分数(TF)环境中 ctDNA 片段的稀疏性并提高 MRD 灵敏度,我们之前利用血浆全基因组测序(WGS)整合了全基因组突变。在此,我们现在引入了 MRD-EDGE,这是一个基于机器学习的 WGS ctDNA 单核苷酸变异(SNV)和拷贝数变异(CNV)检测平台,旨在增加信号富集。MRD-EDGE 使用深度学习和 ctDNA 特异性特征空间,与之前的 WGS 错误抑制相比,将 WGS 中的 SNV 信号噪声比提高了约 300 倍。MRD-EDGE 还通过 WGS 将超灵敏 CNV 检测所需的非整倍体程度从 1Gb 降低到 200Mb,从而极大地扩展了其在实体肿瘤中的适用性。我们利用改进的性能在多种癌症类型中识别手术后的 MRD,跟踪肺癌新辅助免疫治疗中 TF 的变化,并证明了癌前结直肠腺瘤中的 ctDNA 脱落。最后,MRD-EDGE 的激进信号噪声比使高级黑色素瘤和肺癌能够仅通过血浆(非肿瘤信息)进行疾病监测,为接受免疫检查点抑制的患者提供了有临床意义的 TF 监测。