Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China.
Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China.
Biotechnol Bioeng. 2024 Sep;121(9):2752-2766. doi: 10.1002/bit.28769. Epub 2024 Jun 14.
Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.
天然水凝胶广泛应用于组织工程,具有优异的生物降解性和生物相容性。然而,由于其机械性能较差,限制了其在三维(3D)打印鼻软骨领域的应用。本研究提供了一种由光固化明胶、透明质酸和丙烯酰胺(AM)组成的多交联网络混合墨水。该墨水可通过基于数字光处理(DLP)的 3D 打印技术加工成具有良好生物相容性和高硬度特性的复杂 3D 水凝胶结构,包括类似于鼻子的复杂形状。通过改变 AM 的含量,可以调整水凝胶的机械性能和生物相容性。与明胶甲基丙烯酰(GelMA)/透明质酸甲基丙烯酰(HAMA)水凝胶相比,添加 AM 可显著提高水凝胶的机械性能,同时提高打印质量。同时,使用新生 Sprague-Dawley(SD)大鼠软骨细胞(CChons)评估多交联网络水凝胶的生物相容性和软骨发育情况。培养 7 天后,接种在水凝胶上的细胞大量增殖,并保持特定蛋白的表达。总之,我们的研究结果表明 GelMA/HAMA/聚丙烯酰胺(PAM)水凝胶是一种有潜力的鼻软骨修复材料。由适当比例的 GelMA/HAMA/PAM 组成的光固化多交联网络墨水非常适合 DLP 3D 打印,将在未来的鼻软骨、耳软骨、关节软骨和其他组织和器官的构建中发挥重要作用。值得注意的是,以前的研究尚未探索 3D 打印 GelMA/HAMA/PAM 水凝胶在鼻软骨再生中的应用。