Shanghai Artificial Intelligence Laboratory, Shanghai, China.
Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, P.R. china.
Health Informatics J. 2024 Apr-Jun;30(2):14604582241262961. doi: 10.1177/14604582241262961.
This study aims to address the critical challenges of data integrity, accuracy, consistency, and precision in the application of electronic medical record (EMR) data within the healthcare sector, particularly within the context of Chinese medical information data management. The research seeks to propose a solution in the form of a medical metadata governance framework that is efficient and suitable for clinical research and transformation. The article begins by outlining the background of medical information data management and reviews the advancements in artificial intelligence (AI) technology relevant to the field. It then introduces the "Service, Patient, Regression, base/Away, Yeast" (SPRAY)-type AI application as a case study to illustrate the potential of AI in EMR data management. The research identifies the scarcity of scientific research on the transformation of EMR data in Chinese hospitals and proposes a medical metadata governance framework as a solution. This framework is designed to achieve scientific governance of clinical data by integrating metadata management and master data management, grounded in clinical practices, medical disciplines, and scientific exploration. Furthermore, it incorporates an information privacy security architecture to ensure data protection. The proposed medical metadata governance framework, supported by AI technology, offers a structured approach to managing and transforming EMR data into valuable scientific research outcomes. This framework provides guidance for the identification, cleaning, mining, and deep application of EMR data, thereby addressing the bottlenecks currently faced in the healthcare scenario and paving the way for more effective clinical research and data-driven decision-making.
本研究旨在解决医疗保健领域,特别是中国医学信息数据管理中电子病历(EMR)数据应用中数据完整性、准确性、一致性和精度方面的关键挑战。研究旨在提出一种医疗元数据治理框架的解决方案,该框架高效且适用于临床研究和转化。
文章首先概述了医学信息数据管理的背景,并回顾了人工智能(AI)技术在该领域的进展。然后,它介绍了“服务、患者、回归、基础/远离、酵母”(SPRAY)型 AI 应用作为案例研究,以说明 AI 在 EMR 数据管理中的潜力。
研究确定了中国医院 EMR 数据转化方面科学研究的匮乏,并提出了医疗元数据治理框架作为解决方案。该框架旨在通过整合元数据管理和主数据管理,以临床实践、医学学科和科学探索为基础,实现临床数据的科学治理。此外,它还纳入了信息隐私安全架构,以确保数据保护。
该研究提出的医疗元数据治理框架,在人工智能技术的支持下,为管理和将 EMR 数据转化为有价值的科学研究成果提供了一种结构化的方法。该框架为 EMR 数据的识别、清理、挖掘和深度应用提供了指导,从而解决了医疗保健场景中目前面临的瓶颈问题,为更有效的临床研究和数据驱动的决策铺平了道路。