Suppr超能文献

风速和风向对基于动态时间规整和集成学习模型的作物产量预测的影响。

Effects of wind speed and wind direction on crop yield forecasting using dynamic time warping and an ensembled learning model.

机构信息

School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China.

School of Software, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China.

出版信息

PeerJ. 2024 Jun 11;12:e16538. doi: 10.7717/peerj.16538. eCollection 2024.

Abstract

The cultivation of cashew crops carries numerous economic advantages, and countries worldwide that produce this crop face a high demand. The effects of wind speed and wind direction on crop yield prediction using proficient deep learning algorithms are less emphasized or researched. We propose a combination of advanced deep learning techniques, specifically focusing on long short-term memory (LSTM) and random forest models. We intend to enhance this ensemble model using dynamic time warping (DTW) to assess the spatiotemporal data (wind speed and wind direction) similarities within Jaman North, Jaman South, and Wenchi with their respective production yield. In the Bono region of Ghana, these three areas are crucial for cashew production. The LSTM-DTW-RF model with wind speed and wind direction achieved an R score of 0.847 and the LSTM-RF model without these two key features R score of (0.74). Both models were evaluated using the augmented Dickey-Fuller (ADF) test, which is commonly used in time series analysis to assess stationarity, where the LSTM-DTW-RF achieved a 90% level of confidence, while LSTM-RF attained an 87.99% level. Among the three municipalities, Jaman South had the highest evaluation scores for the model, with an RMSE of 0.883, an R of 0.835, and an MBE of 0.212 when comparing actual and predicted values for Wenchi. In terms of the annual average wind direction, Jaman North recorded (270.5 SW°), Jaman South recorded (274.8 SW°), and Wenchi recorded (272.6 SW°). The DTW similarity distance for the annual average wind speed across these regions fell within specific ranges: Jaman North (±25.72), Jaman South (±25.89), and Wenchi (±26.04). Following the DTW similarity evaluation, Jaman North demonstrated superior performance in wind speed, while Wenchi excelled in wind direction. This underscores the potential efficiency of DTW when incorporated into the analysis of environmental factors affecting crop yields, given its invariant nature. The results obtained can guide further exploration of DTW variations in combination with other machine learning models to predict higher cashew yields. Additionally, these findings emphasize the significance of wind speed and direction in vertical farming, contributing to informed decisions for sustainable agricultural growth and development.

摘要

腰果种植具有许多经济优势,全球生产这种作物的国家面临着高需求。使用熟练的深度学习算法预测风速和风向对作物产量的影响较少受到强调或研究。我们提出了一种先进的深度学习技术的组合,特别是专注于长短期记忆 (LSTM) 和随机森林模型。我们打算使用动态时间规整 (DTW) 来增强这个集成模型,以评估杰曼北部、杰曼南部和温奇的时空数据(风速和风向)相似性及其各自的产量。在加纳的博诺地区,这三个地区对腰果生产至关重要。LSTM-DTW-RF 模型结合风速和风向的 R 得分为 0.847,而不包括这两个关键特征的 LSTM-RF 模型的 R 得分为 0.74。这两个模型都使用了增广迪基-富勒 (ADF) 检验进行评估,该检验常用于时间序列分析以评估平稳性,其中 LSTM-DTW-RF 达到了 90%的置信水平,而 LSTM-RF 达到了 87.99%。在这三个直辖市中,杰曼南部的模型评估得分最高,温奇的实际值与预测值之间的 RMSE 为 0.883,R 为 0.835,MBE 为 0.212。就年平均风向而言,杰曼北部记录的风向为(270.5 SW°),杰曼南部记录的风向为(274.8 SW°),温奇记录的风向为(272.6 SW°)。这些地区年平均风速的 DTW 相似距离在特定范围内:杰曼北部(±25.72),杰曼南部(±25.89)和温奇(±26.04)。在 DTW 相似性评估之后,杰曼北部在风速方面表现出色,而温奇在风向方面表现出色。这凸显了 DTW 在分析影响作物产量的环境因素时的潜在效率,因为它具有不变性。研究结果可以指导进一步探索 DTW 与其他机器学习模型的变化,以预测更高的腰果产量。此外,这些发现强调了风速和风向在垂直农业中的重要性,为可持续农业增长和发展做出明智决策提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f23f/11177857/72f758136914/peerj-12-16538-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验