Paul Srijita, Bhuyan Snigdha, Balasoupramanien Divya Dharshni, Palaniappan Arunkumar
School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore Maryland21218, United States.
ACS Omega. 2024 May 29;9(23):24121-24141. doi: 10.1021/acsomega.3c10305. eCollection 2024 Jun 11.
Insulin, a pivotal anabolic hormone, regulates glucose homeostasis by facilitating the conversion of blood glucose to energy or storage. Dysfunction in insulin activity, often associated with pancreatic β cells impairment, leads to hyperglycemia, a hallmark of diabetes. Type 1 diabetes (T1D) results from autoimmune destruction of β cells, while type 2 diabetes (T2D) stems from genetic, environmental, and lifestyle factors causing β cell dysfunction and insulin resistance. Currently, insulin therapy is used for most of the cases of T1D, while it is used only in a few persistent cases of T2D, often supplemented with dietary and lifestyle changes. The key challenge in oral insulin delivery lies in overcoming gastrointestinal (GI) barriers, including enzymatic degradation, low permeability, food interactions, low bioavailability, and long-term safety concerns. The muco-adhesive (MA) and muco-penetrative (MP) formulations aim to enhance oral insulin delivery by addressing these challenges. The mucus layer, a hydrogel matrix covering epithelial cells in the GI tract, poses significant barriers to oral insulin absorption. Its structure, composition, and turnover rate influence interactions with insulin and other drug carriers. Some of the few factors that influence mucoadhesion and mucopenetration are particle size, surface charge distribution, and surface modifications. This review discusses the challenges associated with oral insulin delivery, explores the properties of mucus, and evaluates the strategies for achieving excellent MA and MP formulations, focusing on nanotechnology-based approaches. The development of effective oral insulin formulations holds the potential to revolutionize diabetes management, providing patients with a more convenient and patient-friendly alternative to traditional insulin administration methods.
胰岛素是一种关键的合成代谢激素,通过促进血糖转化为能量或储存来调节葡萄糖稳态。胰岛素活性异常通常与胰腺β细胞受损有关,会导致高血糖,这是糖尿病的一个标志。1型糖尿病(T1D)是由β细胞的自身免疫性破坏引起的,而2型糖尿病(T2D)则源于导致β细胞功能障碍和胰岛素抵抗的遗传、环境和生活方式因素。目前,胰岛素疗法用于大多数T1D病例,而仅在少数持续的T2D病例中使用,通常还需辅以饮食和生活方式的改变。口服胰岛素给药的关键挑战在于克服胃肠道(GI)屏障,包括酶降解、低渗透性、食物相互作用、低生物利用度以及长期安全性问题。粘膜粘附(MA)和粘膜穿透(MP)制剂旨在通过应对这些挑战来增强口服胰岛素给药效果。粘液层是覆盖胃肠道上皮细胞的水凝胶基质,对口服胰岛素吸收构成重大障碍。其结构、组成和周转率会影响与胰岛素及其他药物载体的相互作用。影响粘膜粘附和粘膜穿透的少数因素包括粒径、表面电荷分布和表面修饰。本综述讨论了与口服胰岛素给药相关的挑战,探讨了粘液的特性,并评估了实现优异的MA和MP制剂的策略,重点是基于纳米技术的方法。开发有效的口服胰岛素制剂有可能彻底改变糖尿病管理方式,为患者提供一种比传统胰岛素给药方法更方便且更有利于患者的选择。