Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
Guger Technologies OG, Graz, Austria.
J Neural Eng. 2024 Jun 27;21(3). doi: 10.1088/1741-2552/ad593b.
. In brain-computer interfaces (BCIs) that utilize motor imagery (MI), minimizing calibration time has become increasingly critical for real-world applications. Recently, transfer learning (TL) has been shown to effectively reduce the calibration time in MI-BCIs. However, variations in data distribution among subjects can significantly influence the performance of TL in MI-BCIs.We propose a cross-dataset adaptive domain selection transfer learning framework that integrates domain selection, data alignment, and an enhanced common spatial pattern (CSP) algorithm. Our approach uses a huge dataset of 109 subjects as the source domain. We begin by identifying non-BCI illiterate subjects from this huge dataset, then determine the source domain subjects most closely aligned with the target subjects using maximum mean discrepancy. After undergoing Euclidean alignment processing, features are extracted by multiple composite CSP. The final classification is carried out using the support vector machine.Our findings indicate that the proposed technique outperforms existing methods, achieving classification accuracies of 75.05% and 76.82% in two cross-dataset experiments, respectively.By reducing the need for extensive training data, yet maintaining high accuracy, our method optimizes the practical implementation of MI-BCIs.
. 在利用运动想象(MI)的脑机接口(BCIs)中,减少校准时间对于实际应用变得越来越重要。最近,迁移学习(TL)已被证明可以有效地减少 MI-BCIs 中的校准时间。然而,受试者之间的数据分布差异会显著影响 TL 在 MI-BCIs 中的性能。我们提出了一种跨数据集自适应域选择迁移学习框架,该框架集成了域选择、数据对齐和增强的公共空间模式(CSP)算法。我们的方法使用了一个包含 109 个受试者的大型数据集作为源域。我们首先从这个大型数据集中识别出非 BCI 文盲受试者,然后使用最大均值差异确定与目标受试者最接近的源域受试者。经过欧几里得对齐处理后,通过多个复合 CSP 提取特征。最后使用支持向量机进行分类。我们的研究结果表明,该技术优于现有方法,在两个跨数据集实验中分别实现了 75.05%和 76.82%的分类精度。通过减少对大量训练数据的需求,同时保持高精度,我们的方法优化了 MI-BCIs 的实际实现。