Suppr超能文献

基于深度学习对手部 MRI 中炎症性关节炎患者的侵蚀、滑膜炎和骨炎的分类。

Deep learning-based classification of erosion, synovitis and osteitis in hand MRI of patients with inflammatory arthritis.

机构信息

Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.

出版信息

RMD Open. 2024 Jun 17;10(2):e004273. doi: 10.1136/rmdopen-2024-004273.

Abstract

OBJECTIVES

To train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis.

METHODS

Hand MRIs (coronal T1-weighted, T2-weighted fat-suppressed, T1-weighted fat-suppressed contrast-enhanced) of rheumatoid arthritis (RA) and psoriatic arthritis (PsA) patients from the rheumatology department of the Erlangen University Hospital were assessed by two expert rheumatologists using the Outcome Measures in Rheumatology-validated RA MRI Scoring System and PsA MRI Scoring System scores and were used to train, validate and test CNNs to automatically score erosions, osteitis and synovitis. Scoring performance was compared with human annotations in terms of macro-area under the receiver operating characteristic curve (AUC) and balanced accuracy using fivefold cross-validation. Validation was performed on an independent dataset of MRIs from a second patient cohort.

RESULTS

In total, 211 MRIs from 112 patients (14 906 region of interests (ROIs)) were included for training/internal validation using cross-validation and 220 MRIs from 75 patients (11 040 ROIs) for external validation of the networks. The networks achieved high mean (SD) macro-AUC of 92%±1% for erosions, 91%±2% for osteitis and 85%±2% for synovitis. Compared with human annotation, CNNs achieved a high mean Spearman correlation for erosions (90±2%), osteitis (78±8%) and synovitis (69±7%), which remained consistent in the validation dataset.

CONCLUSIONS

We developed a CNN-based automated scoring system that allowed a rapid grading of erosions, osteitis and synovitis with good diagnostic accuracy and using less MRI sequences compared with conventional scoring. This CNN-based approach may help develop standardised cost-efficient and time-efficient assessments of hand MRIs for patients with arthritis.

摘要

目的

训练、测试和验证基于卷积神经网络(CNN)的方法在评估炎症性关节炎患者手部 MRI 中骨侵蚀、骨炎和滑膜炎方面的性能。

方法

从埃尔兰根大学医院风湿病科收集类风湿关节炎(RA)和银屑病关节炎(PsA)患者的手部 MRI(冠状位 T1 加权、T2 加权脂肪抑制、T1 加权脂肪抑制对比增强),由两名专家风湿病医生使用经验证的风湿病学疗效测量-RA MRI 评分系统和 PsA MRI 评分系统对其进行评估,并用于训练、验证和测试 CNN 以自动评分侵蚀、骨炎和滑膜炎。使用五重交叉验证,从宏观接收器工作特征曲线(AUC)和平衡准确性方面比较评分性能与人类注释。在第二个患者队列的 MRI 独立数据集上进行验证。

结果

总共纳入 211 例 112 名患者(14906 个感兴趣区(ROI))的 MRI 进行训练/内部验证,以及 220 例 75 名患者(11040 个 ROI)的 MRI 进行网络外部验证。网络获得了侵蚀 92%±1%、骨炎 91%±2%和滑膜炎 85%±2%的高平均(SD)宏观 AUC。与人类注释相比,CNN 对侵蚀(90±2%)、骨炎(78±8%)和滑膜炎(69±7%)的平均 Spearman 相关性较高,在验证数据集上也保持一致。

结论

我们开发了一种基于 CNN 的自动评分系统,与传统评分相比,该系统能够快速分级侵蚀、骨炎和滑膜炎,且具有良好的诊断准确性,并且需要的 MRI 序列更少。这种基于 CNN 的方法可能有助于为关节炎患者开发标准化、具有成本效益和省时的手部 MRI 评估方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3935/11184189/c8fdf644fabc/rmdopen-2024-004273f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验