The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, Australia.
J Extracell Vesicles. 2024 Jun;13(6):e12455. doi: 10.1002/jev2.12455.
Neuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.
神经炎症是神经退行性疾病的一个潜在特征,通常在疾病的发病机制早期出现。小胶质细胞激活是神经炎症的主要启动因素,通过脂多糖 (LPS) 处理可以诱导其激活,导致诱导型一氧化氮合酶 (iNOS) 的表达,从而产生一氧化氮 (NO)。NO 通过 S-亚硝化作用对半胱氨酸硫醇进行翻译后修饰,从而改变靶蛋白的功能。此外,这些经 NO 修饰的蛋白质被包装到细胞外囊泡 (EV) 中,可以在远处发挥 NO 信号作用,从而进一步传播神经炎症表型。尽管如此,激活的小胶质细胞 EV 中的 NO 修饰蛋白质组尚未得到研究。本研究旨在确定 NO 信号在神经炎症中诱导的蛋白质翻译后修饰。用飞行时间-二次离子质谱 (ToF-SIMS) 对 LPS 处理的小胶质细胞分离的 EV 进行了质谱表面成像,此外还进行了碘标记和比较蛋白质组学分析,以鉴定翻译后 S-亚硝化修饰。ToF-SIMS 成像成功鉴定了 LPS 处理的小胶质细胞衍生 EV 蛋白中经 NO 信号修饰的半胱氨酸硫醇侧链。此外,碘标记蛋白质组学分析显示,来自 LPS 处理的小胶质细胞的 EV 携带表明神经炎症的 S-亚硝化蛋白。其中包括已知的经 NO 修饰的蛋白质和与 LPS 诱导的小胶质细胞激活相关的蛋白质,它们可能在神经炎症通讯中发挥重要作用。总之,这些结果表明激活的小胶质细胞可以通过神经炎症期间 EV 的选择性包装来发挥广泛的 NO 信号变化。