Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
Adv Healthc Mater. 2024 Oct;13(26):e2401252. doi: 10.1002/adhm.202401252. Epub 2024 Jun 25.
Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.
脂质纳米颗粒(LNP)仍然是信使 RNA(mRNA)传递的最先进平台。迄今为止,mRNA LNP 的合成主要是通过微流控技术将脂质和 mRNA 混合来完成的。在这项研究中,开发了一种经济高效的用于合成 mRNA LNP 的微流控装置。它可以在不影响 LNP 性质的情况下微调 LNP 的特性。将其与商业设备(NanoAssemblr)和乙醇注射进行了比较,并研究了制造条件对 mRNA LNP 性能的影响。与其他 LNP 相比,乙醇注射制备的 LNP 具有更宽的粒径分布和更不均匀的内部结构(例如,泡状亚结构),而其他 LNP 则显示出均匀的结构和致密的核。小角度 X 射线散射(SAXS)数据表明,与由 NanoAssemblr 生产的 LNP 相比,由定制设备合成的 LNP 中 mRNA 和脂质之间的相互作用更紧密。有趣的是,多聚精氨酸(pSar)修饰的 LNP 的转染效率更高,其表面粗糙度也高于聚乙二醇(PEG)化的 LNP。然而,制造方法对体内 mRNA 表达的影响不大。总之,这种自制的经济型微流控装置可以合成 LNP,是 NanoAssemblr 的有力替代品。这些制备方法对 LNP 的结构有显著影响,但对体外和体内的 mRNA 传递影响较小。