Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain.
Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain.
Phys Med. 2024 Jul;123:103408. doi: 10.1016/j.ejmp.2024.103408. Epub 2024 Jun 17.
This study aims to investigate lattice radiotherapy (LRT) for bulky tumor in 10 patients, analyzing geometrical and dosimetrical parameters and correlations among variables.
Patients were prescribed a single-fraction of 18 Gy to 50 % of each spherical vertex (1.5 cm diameter). Vertices were arranged in equidistant planes forming a triangular pattern. Center-to-center distance (D) between vertices was varied from 4 to 5 cm. A new method for calculating the valley-to-peak dose ratio (VPDR) was proposed and compared to other two from existing literature. GTV volumes (V), vertex number (N), low-dose related parameters and vertex D, D, and D were recorded. Beam-on time and Monitor Units (MU) were also evaluated. Correlations were assessed using Spearman's coefficient, with significant differences analyzed using Mann-Whitney U test.
Tumor volumes ranged from 417 to 3615 cm. Median vertex number was 14.5 (IQR:11.3-17.8). VPDR ranged from 0.16 to 0.28. Median D spanned from 10.0 to 13.7 Gy, median D exceeded 18.0 Gy, and median D surpassed 23.3 Gy. Periphery dose remained under 4.0 Gy. Plans exhibited high modulation, with median beam-on time and MU of 8.8 min (IQR:8.2-10.1) and 13,069 MU (IQR:11574-13639). Significant correlations were found between N and V (p < 0.01), MU (p < 0.02) and beam-on time (p < 0.01) and between D and two VPDR definitions (p < 0.02) and periphery dose (p < 0.01). Significant differences were observed among the three valley dose definitions (p < 0.01) and the three peak dose definitions (p < 0.01).
Reporting geometrical and dosimetrical parameters in LRT is crucial, alongside the need for unified definitions of valley and peak doses.
本研究旨在调查 10 例大块肿瘤患者的晶格放疗(LRT),分析几何和剂量学参数以及变量之间的相关性。
患者接受了单次 18 Gy 至每个球形顶点的 50%的剂量(直径 1.5 cm)。顶点均匀分布在等距的平面上,形成一个三角形图案。顶点之间的中心到中心距离(D)从 4 到 5 cm 不等。提出了一种新的计算谷峰剂量比(VPDR)的方法,并与现有文献中的另外两种方法进行了比较。记录了 GTV 体积(V)、顶点数量(N)、与低剂量相关的参数以及顶点 D、D 和 D。还评估了射束开启时间和监测器单位(MU)。使用 Spearman 系数评估相关性,使用 Mann-Whitney U 检验分析显著差异。
肿瘤体积从 417 到 3615 cm 不等。中位数顶点数为 14.5(IQR:11.3-17.8)。VPDR 从 0.16 到 0.28 不等。中位数 D 从 10.0 到 13.7 Gy 不等,中位数 D 超过 18.0 Gy,中位数 D 超过 23.3 Gy。周边剂量仍低于 4.0 Gy。计划显示出高度的调制,中位射束开启时间和 MU 分别为 8.8 分钟(IQR:8.2-10.1)和 13069 MU(IQR:11574-13639)。N 与 V(p<0.01)、MU(p<0.02)和射束开启时间(p<0.01)之间存在显著相关性,D 与两种 VPDR 定义(p<0.02)和周边剂量(p<0.01)之间存在显著相关性。三种谷剂量定义(p<0.01)和三种峰剂量定义(p<0.01)之间存在显著差异。
在 LRT 中报告几何和剂量学参数至关重要,同时需要统一的谷峰剂量定义。