Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Institute of Plant and Animal Ecology, the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia.
Sci Data. 2024 Jun 18;11(1):645. doi: 10.1038/s41597-024-03483-x.
Air temperature (Ta), snow depth (Sd), and soil temperature (Tg) are crucial variables for studying the above- and below-ground thermal conditions, especially in high latitudes. However, in-situ observations are frequently sparse and inconsistent across various datasets, with a significant amount of missing data. This study has assembled a comprehensive dataset of in-situ observations of Ta, Sd, and Tg for the Northern Hemisphere (higher than 30°N latitude), spanning 1960-2021. This dataset encompasses metadata and daily data time series for 27,768, 32,417, and 659 gages for Ta, Sd, and Tg, respectively. Using the ERA5-Land reanalysis data product, we applied deep learning methodology to reconstruct the missing data that account for 54.5%, 59.3%, and 74.3% of Ta, Sd, and Tg daily time series, respectively. The obtained high temporal resolution dataset can be used to better understand physical phenomena and relevant mechanisms, such as the dynamics of land-surface-atmosphere energy exchange, snowpack, and permafrost.
空气温度(Ta)、雪深(Sd)和土壤温度(Tg)是研究地上和地下热状况的关键变量,特别是在高纬度地区。然而,实地观测经常稀疏且在不同数据集之间不一致,存在大量缺失数据。本研究汇集了北半球(高于 30°N 纬度)的 Ta、Sd 和 Tg 实地观测的综合数据集,时间跨度为 1960-2021 年。该数据集包含元数据和每日数据时间序列,分别有 27768、32417 和 659 个 Ta、Sd 和 Tg 测站。我们使用 ERA5-Land 再分析数据产品,应用深度学习方法来重建分别占 Ta、Sd 和 Tg 每日时间序列 54.5%、59.3%和 74.3%的缺失数据。获得的高时间分辨率数据集可用于更好地理解物理现象和相关机制,例如地表-大气能量交换、积雪和多年冻土的动态。