Suppr超能文献

通过前沿聚合制备的碳/环氧复合材料的固化程度、微观结构及性能

Degree of Cure, Microstructures, and Properties of Carbon/Epoxy Composites Processed via Frontal Polymerization.

作者信息

Shams Aurpon Tahsin, Papon Easir Arafat, Shinde Pravin S, Bara Jason, Haque Anwarul

机构信息

Department of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, AL 35487, USA.

Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.

出版信息

Polymers (Basel). 2024 May 24;16(11):1493. doi: 10.3390/polym16111493.

Abstract

The frontal polymerization (FP) of carbon/epoxy (C/Ep) composites is investigated, considering FP as a viable route for the additive manufacturing (AM) of thermoset composites. Neat epoxy (Ep) resin-, short carbon fiber (SCF)-, and continuous carbon fiber (CCF)-reinforced composites are considered in this study. The evolution of the exothermic reaction temperature, polymerization frontal velocity, degree of cure, microstructures, effects of fiber concentration, fracture surface, and thermal and mechanical properties are investigated. The results show that exothermic reaction temperatures range between 110 °C and 153 °C, while the initial excitation temperatures range from 150 °C to 270 °C. It is observed that a higher fiber content increases cure time and decreases average frontal velocity, particularly in low SCF concentrations. This occurs because resin content, which predominantly drives the exothermic reaction, decreases with increased fiber content. The FP velocities of neat Ep resin- and SCF-reinforced composites are seen to be 0.58 and 0.50 mm/s, respectively. The maximum FP velocity (0.64 mm/s) is observed in CCF/Ep composites. The degree of cure (α) is observed to be in the range of 70% to 85% in FP-processed composites. Such a range of α is significantly low in comparison to traditional composites processed through a long cure cycle. The glass transition temperature (T) of neat epoxy resin is seen to be approximately 154 °C, and it reduces slightly to a lower value (149 °C) for SCF-reinforced composites. The microstructures show significantly high void contents (12%) and large internal cracks. These internal cracks are initiated due to high thermal residual stress developed during curing for non-uniform temperature distribution. The tensile properties of FP-cured samples are seen to be inferior in comparison to autoclave-processed neat epoxy. This occurs mostly due to the presence of large void contents, internal cracks, and a poor degree of cure. Finally, a highly efficient and controlled FP method is desirable to achieve a defect-free microstructure with improved mechanical and thermal properties.

摘要

本文研究了碳/环氧树脂(C/Ep)复合材料的前沿聚合(FP),将其视为热固性复合材料增材制造(AM)的可行途径。本研究考虑了纯环氧树脂(Ep)、短碳纤维(SCF)和连续碳纤维(CCF)增强的复合材料。研究了放热反应温度、聚合前沿速度、固化度、微观结构、纤维浓度的影响、断裂表面以及热性能和力学性能的演变。结果表明,放热反应温度在110℃至153℃之间,而初始激发温度在150℃至270℃之间。观察到较高的纤维含量会增加固化时间并降低平均前沿速度,特别是在低SCF浓度下。这是因为主要驱动放热反应的树脂含量随着纤维含量的增加而减少。纯Ep树脂和SCF增强复合材料的FP速度分别为0.58和0.50 mm/s。在CCF/Ep复合材料中观察到最大FP速度(0.64 mm/s)。在FP处理的复合材料中,固化度(α)在70%至85%的范围内。与通过长固化周期加工的传统复合材料相比,这样的α范围显著较低。纯环氧树脂的玻璃化转变温度(T)约为154℃,对于SCF增强复合材料,它略微降低到较低值(149℃)。微观结构显示出显著高的孔隙率(12%)和大的内部裂纹。这些内部裂纹是由于固化过程中因温度分布不均匀而产生的高热残余应力引发的。与高压釜处理的纯环氧树脂相比,FP固化样品的拉伸性能较差。这主要是由于存在大量孔隙、内部裂纹和较差的固化度。最后,需要一种高效且可控的FP方法来实现具有改善的力学和热性能的无缺陷微观结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5f0/11174699/176275555b8d/polymers-16-01493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验