School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China.
Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen 518172, China.
Int J Mol Sci. 2024 May 22;25(11):5654. doi: 10.3390/ijms25115654.
Time-series experiments are crucial for understanding the transient and dynamic nature of biological phenomena. These experiments, leveraging advanced classification and clustering algorithms, allow for a deep dive into the cellular processes. However, while these approaches effectively identify patterns and trends within data, they often need to improve in elucidating the causal mechanisms behind these changes. Building on this foundation, our study introduces a novel algorithm for temporal causal signaling modeling, integrating established knowledge networks with sequential gene expression data to elucidate signal transduction pathways over time. Focusing on s () aerobic to anaerobic transition (AAT), this research marks a significant leap in understanding the organism's metabolic shifts. By applying our algorithm to a comprehensive regulatory network and a time-series microarray dataset, we constructed the cross-time point core signaling and regulatory processes of 's AAT. Through gene expression analysis, we validated the primary regulatory interactions governing this process. We identified a novel regulatory scheme wherein environmentally responsive genes, and , activate , modulating the nitrogen metabolism regulators fnr and nac. This regulatory cascade controls the stress regulators and , ultimately affecting the cell motility gene , unveiling a novel regulatory axis that elucidates the complex regulatory dynamics during the AAT process. Our approach, merging empirical data with prior knowledge, represents a significant advance in modeling cellular signaling processes, offering a deeper understanding of microbial physiology and its applications in biotechnology.
时间序列实验对于理解生物现象的瞬态和动态性质至关重要。这些实验利用先进的分类和聚类算法,可以深入研究细胞过程。然而,尽管这些方法可以有效地识别数据中的模式和趋势,但它们通常需要改进,以阐明这些变化背后的因果机制。在此基础上,我们的研究引入了一种新的时间因果信号建模算法,该算法将已建立的知识网络与序列基因表达数据相结合,以随时间阐明信号转导途径。本研究专注于 s()需氧到厌氧的转变 (AAT),这标志着我们对生物体代谢转变的理解有了重大飞跃。通过将我们的算法应用于综合调控网络和时间序列微阵列数据集,我们构建了 s()AAT 的跨时间点核心信号和调控过程。通过基因表达分析,我们验证了控制该过程的主要调控相互作用。我们确定了一个新的调控方案,其中环境响应基因和激活,调节氮代谢调节剂 fnr 和 nac。这个调控级联控制应激调节剂和,最终影响细胞运动基因,揭示了 AAT 过程中复杂调控动态的新调控轴,阐明了微生物生理学及其在生物技术中的应用。我们的方法将经验数据与先验知识相结合,代表了对细胞信号处理建模的重大进展,为微生物生理学及其在生物技术中的应用提供了更深入的理解。