Suppr超能文献

揭示黑暗化学物质的奥秘:通过强化虚拟筛选和体外评估发现 SARS-CoV-2 M 主蛋白酶抑制剂。

Shedding Light on Dark Chemical Matter: The Discovery of a SARS-CoV-2 M Main Protease Inhibitor through Intensive Virtual Screening and In Vitro Evaluation.

机构信息

Department of Materials Science and Physical Chemistry, Institut de Recerca en Quimica Teòrica i Computacional (IQTCUB), University of Barcelona (UB), 08028 Barcelona, Spain.

Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.

出版信息

Int J Mol Sci. 2024 Jun 1;25(11):6119. doi: 10.3390/ijms25116119.

Abstract

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (M) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a value of 48 ± 5 μM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.

摘要

由于 COVID-19 的持续高发和一些国家抗病毒药物的有限可及性,针对 SARS-CoV-2 的特异性抗病毒疗法的开发仍然至关重要。在这种情况下,暗化学物质 (DCM) 作为一组具有出色选择性特征的类药物化合物,尽管经过广泛检测,但从未显示出生物活性,似乎是药物开发的绝佳起点。因此,在这项研究中,我们使用 DCM 化合物作为配体进行了高通量筛选,以鉴定 SARS-CoV-2 主蛋白酶 (M) 的抑制剂。使用多种受体和两种不同的对接评分函数来确定最佳分子对接构象。选择的结构经过广泛的常规和高斯加速分子动力学模拟。结果表明,选择了四个具有最佳分子行为和结合能的化合物进行实验测试,其中一种化合物的抑制活性为 48±5μM。通过虚拟筛选,我们确定了药物开发的重要起点,为 DCM 化合物提供了新的研究视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52de/11172690/dda6a8154202/ijms-25-06119-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验