Suppr超能文献

慢性呼吸系统疾病中认知、情感和呼吸特征之间的相互作用:一种聚类分析方法。

Interactions between Cognitive, Affective, and Respiratory Profiles in Chronic Respiratory Disorders: A Cluster Analysis Approach.

作者信息

Buican Iulian-Laurențiu, Gheorman Victor, Udriştoiu Ion, Olteanu Mădălina, Rădulescu Dumitru, Calafeteanu Dan Marian, Nemeş Alexandra Floriana, Călăraşu Cristina, Rădulescu Patricia-Mihaela, Streba Costin-Teodor

机构信息

U.M.F. Doctoral School Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.

Leamna Pulmonology Hospital, 207129 Leamna, Romania.

出版信息

Diagnostics (Basel). 2024 May 30;14(11):1153. doi: 10.3390/diagnostics14111153.

Abstract

This study conducted at Leamna Pulmonology Hospital investigated the interrelations among cognitive, affective, and respiratory variables within a cohort of 100 patients diagnosed with chronic respiratory conditions, utilizing sophisticated machine learning-based clustering techniques. Spanning from October 2022 to February 2023, hospitalized individuals confirmed to have asthma or COPD underwent extensive evaluations using standardized instruments such as the mMRC scale, the CAT test, and spirometry. Complementary cognitive and affective assessments were performed employing the MMSE, MoCA, and the Hamilton Anxiety and Depression Scale, furnishing a holistic view of patient health statuses. The analysis delineated three distinct clusters: Moderate Cognitive Respiratory, Severe Cognitive Respiratory, and Stable Cognitive Respiratory, each characterized by unique profiles that underscore the necessity for tailored therapeutic strategies. These clusters exhibited significant correlations between the severity of respiratory symptoms and their effects on cognitive and affective conditions. The results highlight the benefits of an integrated treatment approach for COPD and asthma, which is personalized based on the intricate patterns identified through clustering. Such a strategy promises to enhance the management of these diseases, potentially elevating the quality of life and everyday functionality of the patients. These findings advocate for treatment customization according to the specific interplays among cognitive, affective, and respiratory dimensions, presenting substantial prospects for clinical advancement and pioneering new avenues for research in the domain of chronic respiratory disease management.

摘要

这项在莱姆纳肺病医院开展的研究,利用先进的基于机器学习的聚类技术,调查了100名被诊断患有慢性呼吸道疾病的患者群体中认知、情感和呼吸变量之间的相互关系。从2022年10月至2023年2月,确诊患有哮喘或慢性阻塞性肺疾病(COPD)的住院患者使用诸如改良英国医学研究委员会(mMRC)量表、慢性阻塞性肺疾病评估测试(CAT)以及肺功能测定等标准化工具进行了全面评估。采用简易精神状态检查表(MMSE)、蒙特利尔认知评估量表(MoCA)以及汉密尔顿焦虑抑郁量表进行了补充性的认知和情感评估,从而全面了解患者的健康状况。分析划定了三个不同的类别:中度认知呼吸类、重度认知呼吸类和稳定认知呼吸类,每类都具有独特特征,突出了制定个性化治疗策略的必要性。这些类别显示出呼吸症状严重程度与其对认知和情感状况影响之间存在显著相关性。结果突出了针对慢性阻塞性肺疾病和哮喘采用综合治疗方法的益处,该方法是基于通过聚类识别出的复杂模式进行个性化定制的。这样一种策略有望改善这些疾病的管理,可能提升患者的生活质量和日常功能。这些发现主张根据认知、情感和呼吸维度之间的具体相互作用进行治疗定制,为临床进展提供了可观前景,并为慢性呼吸道疾病管理领域的研究开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e456/11171769/c33c594e8856/diagnostics-14-01153-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验