Chen Kangyu, Fan Hengzhen, Bao Hong
The School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China.
Hangzhou Research Institute of Xidian University, Hangzhou 311231, China.
Sensors (Basel). 2024 Jun 3;24(11):3603. doi: 10.3390/s24113603.
A hybrid enhanced inverse finite element method (E-iFEM) is proposed for real-time intelligent sensing of discontinuous aerospace structures. The method can improve the flight performance of intelligent aircrafts by feeding back the structural shape information to the control system. Initially, the presented algorithm combines rigid kinematics with the classical iFEM to discretize the aerospace structures into elastic parts and rigid parts, which will effectively overcome structural complexity due to fluctuating bending stiffness and a special aerodynamic section. Subsequently, the rigid parts provide geometric constraints for the iFEM in the shape reconstruction method. Meanwhile, utilizing the Fiber Bragg grating (FBG) strain sensor to obtain real-time strain information ensures lightweight and anti-interference of the monitoring system. Next, the strain data and the geometric constraints are processed by the iFEM for monitoring the full-field elastic deformation of the aerospace structures. The whole procedure can be interpreted as a piecewise sensing technology. Overall, the effectiveness and reliability of the proposed method are validated by employing a comprehensive numerical simulation and experiment.
提出了一种混合增强逆有限元方法(E-iFEM)用于对不连续航空航天结构进行实时智能传感。该方法通过将结构形状信息反馈给控制系统,可提高智能飞行器的飞行性能。首先,所提出的算法将刚体运动学与经典的逆有限元方法相结合,将航空航天结构离散为弹性部分和刚性部分,这将有效克服由于弯曲刚度波动和特殊气动截面导致的结构复杂性。随后,刚性部分在形状重建方法中为逆有限元方法提供几何约束。同时,利用光纤布拉格光栅(FBG)应变传感器获取实时应变信息,确保了监测系统的轻量化和抗干扰性。接下来,通过逆有限元方法处理应变数据和几何约束,以监测航空航天结构的全场弹性变形。整个过程可解释为一种分段传感技术。总体而言,通过全面的数值模拟和实验验证了所提方法的有效性和可靠性。