Ai Lunhong, Tian Yao, Xiao Tanyang, Zhang Jiayi, Zhang Chenghui, Jiang Jing
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China; College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
J Colloid Interface Sci. 2024 Nov;673:607-615. doi: 10.1016/j.jcis.2024.06.018. Epub 2024 Jun 4.
Electrochemical seawater splitting is a sustainable pathway towards hydrogen production independent of scarce freshwater resources. However, the high energy consumption and harmful chlorine-chemistry interference still pose major technological challenges. Herein, thermodynamically more favorable sulfion oxidation reaction (SOR) is explored to replace energy-intensive oxygen evolution reaction (OER), enabling the dramatically reduced energy consumption and the avoidance of corrosive chlorine species in electrocatalytic systems of NiFe layered double hydroxide (LDH)/FeNiS grown on iron foam (IF) substrate. The resulting NiFe-LDH/FeNiS/IF with superwettable surfaces and favorable heterointerfaces can effectively catalyze SOR and hydrogen evolution reaction (HER), which greatly reduces the operational voltage by 1.05 V at 50 mA cm compared to pure seawater splitting and achieves impressively low electricity consumption of 2.33 kW h per cubic meter of H at 100 mA cm. Significantly, benefitting from the repulsive effect of surface sulfate anions to Cl, the NiFe-LDH/FeNiS/IF exhibits outstanding long-term stability for SOR-coupled chlorine-free hydrogen production with sulfion upcycling into elemental sulfur. The present study uncovers the "killing two birds with one stone" effect of SOR for energy-efficient hydrogen generation and value-added elemental sulfur recovery in seawater electrolysis without detrimental chlorine chemistry.
电化学海水分解是一条独立于稀缺淡水资源的可持续制氢途径。然而,高能耗和有害的氯化学干扰仍然构成重大技术挑战。在此,探索热力学上更有利的硫离子氧化反应(SOR)来取代耗能大的析氧反应(OER),从而在生长于泡沫铁(IF)基底上的镍铁层状双氢氧化物(LDH)/铁镍硫化物的电催化体系中显著降低能耗并避免腐蚀性氯物种的产生。所得具有超可湿表面和良好异质界面的NiFe-LDH/FeNiS/IF能够有效催化SOR和析氢反应(HER),与纯海水分解相比,在50 mA cm时可将工作电压大幅降低1.05 V,在100 mA cm时实现每立方米氢气2.33 kW h的极低电耗。值得注意的是,受益于表面硫酸根阴离子对氯离子的排斥作用,NiFe-LDH/FeNiS/IF在硫离子循环转化为元素硫的无氯析氢耦合SOR过程中表现出出色的长期稳定性。本研究揭示了SOR在海水电解中实现节能制氢和增值回收元素硫的“一石二鸟”效应,且无有害氯化学问题。