Suppr超能文献

建立预测肝癌肝移植预后的列线图。

Development of a nomogram for predicting liver transplantation prognosis in hepatocellular carcinoma.

机构信息

Department of Organ Transplantation, The Third Medical Centre of Chinese PLA General Hospital, Beijing 100039, China.

School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, China.

出版信息

World J Gastroenterol. 2024 Jun 7;30(21):2763-2776. doi: 10.3748/wjg.v30.i21.2763.

Abstract

BACKGROUND

At present, liver transplantation (LT) is one of the best treatments for hepatocellular carcinoma (HCC). Accurately predicting the survival status after LT can significantly improve the survival rate after LT, and ensure the best way to make rational use of liver organs.

AIM

To develop a model for predicting prognosis after LT in patients with HCC.

METHODS

Clinical data and follow-up information of 160 patients with HCC who underwent LT were collected and evaluated. The expression levels of alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, Golgi protein 73, cytokeratin-18 epitopes M30 and M65 were measured using a fully automated chemiluminescence analyzer. The best cutoff value of biomarkers was determined using the Youden index. Cox regression analysis was used to identify the independent risk factors. A forest model was constructed using the random forest method. We evaluated the accuracy of the nomogram using the area under the curve, using the calibration curve to assess consistency. A decision curve analysis (DCA) was used to evaluate the clinical utility of the nomograms.

RESULTS

The total tumor diameter (TTD), vascular invasion (VI), AFP, and cytokeratin-18 epitopes M30 (CK18-M30) were identified as important risk factors for outcome after LT. The nomogram had a higher predictive accuracy than the Milan, University of California, San Francisco, and Hangzhou criteria. The calibration curve analyses indicated a good fit. The survival and recurrence-free survival (RFS) of high-risk groups were significantly lower than those of low- and middle-risk groups ( < 0.001). The DCA shows that the model has better clinical practicability.

CONCLUSION

The study developed a predictive nomogram based on TTD, VI, AFP, and CK18-M30 that could accurately predict overall survival and RFS after LT. It can screen for patients with better postoperative prognosis, and improve long-term survival for LT patients.

摘要

背景

目前,肝移植(LT)是治疗肝细胞癌(HCC)的最佳方法之一。准确预测 LT 后的生存状态可以显著提高 LT 后的生存率,并确保合理利用肝脏器官的最佳方式。

目的

建立预测 HCC 患者 LT 后预后的模型。

方法

收集并评估了 160 例接受 LT 的 HCC 患者的临床数据和随访信息。使用全自动化学发光分析仪测量甲胎蛋白(AFP)、脱γ-羧基凝血酶原、高尔基蛋白 73、细胞角蛋白 18 表位 M30 和 M65 的表达水平。使用约登指数确定生物标志物的最佳截断值。使用 Cox 回归分析确定独立风险因素。使用随机森林方法构建森林模型。我们使用曲线下面积评估列线图的准确性,并使用校准曲线评估一致性。使用决策曲线分析(DCA)评估列线图的临床实用性。

结果

总肿瘤直径(TTD)、血管侵犯(VI)、AFP 和细胞角蛋白 18 表位 M30(CK18-M30)被确定为 LT 后结局的重要危险因素。该列线图的预测准确性高于米兰、加利福尼亚大学旧金山分校和杭州标准。校准曲线分析表明拟合良好。高危组的生存和无复发生存(RFS)明显低于低危和中危组(<0.001)。DCA 表明该模型具有更好的临床实用性。

结论

本研究基于 TTD、VI、AFP 和 CK18-M30 建立了一个预测列线图,可准确预测 LT 后的总生存率和 RFS。它可以筛选出术后预后较好的患者,提高 LT 患者的长期生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d162/11185292/87136e223c54/WJG-30-2763-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验