Zakeri Khalil, Ernst Arthur
Heisenberg Spin-Dynamics Group, Physikalisches Institut, Karlsruhe Institute of Technology, Wolfgang-Gaede-Strasse 1, D-76131 Karlsruhe, Germany.
Institute for Theoretical Physics, Johannes Kepler University, Altenberger Strasse 69, A-4040 Linz, Austria.
Nano Lett. 2024 Aug 7;24(31):9528-9534. doi: 10.1021/acs.nanolett.4c01982. Epub 2024 Jun 20.
Utilizing ultrafast terahertz (THz) magnons, the quanta of collective magnetic excitations, as carriers may provide a promising alternative to overcome the problems associated with electrical losses in nanoelectronic devices and circuits. However, efficient excitation of propagating coherent THz magnons in magnonic nanowaveguides is an essential requirement for the development of such devices. Here, by growing ultrathin ferromagnetic nanostructures on a reconstructed surface, we create well-ordered periodic magnetic nanostripes. We demonstrate that such atomically architectured nanowaveguides not only provide a versatile platform for an efficient generation of THz magnons but also allow for their fast propagation. Our results reveal the complex nature of the spin dynamics within such designed nanowaveguides and pave the way for designing ultrafast magnon-based logic devices with THz operation frequencies.
利用超快太赫兹(THz)磁振子,即集体磁激发的量子,作为载流子可能为克服与纳米电子器件和电路中的电损耗相关的问题提供一种有前景的替代方案。然而,在磁振子纳米波导中高效激发传播相干太赫兹磁振子是此类器件发展的一项基本要求。在此,通过在重构表面上生长超薄铁磁纳米结构,我们创建了有序排列周期性磁纳米条纹。我们证明,这种原子级构建的纳米波导不仅为高效产生太赫兹磁振子提供了一个通用平台,还允许它们快速传播。我们的结果揭示了这种设计的纳米波导内自旋动力学的复杂性质,并为设计具有太赫兹工作频率的超快磁振子基逻辑器件铺平了道路。