Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany.
Department of Chemistry and Centre for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2319676121. doi: 10.1073/pnas.2319676121. Epub 2024 Jun 20.
The photoinduced all-trans to 13-cis isomerization of the retinal Schiff base represents the ultrafast first step in the reaction cycle of bacteriorhodopsin (BR). Extensive experimental and theoretical work has addressed excited-state dynamics and isomerization via a conical intersection with the ground state. In conflicting molecular pictures, the excited state potential energy surface has been modeled as a pure S[Formula: see text] state that intersects with the ground state, or in a 3-state picture involving the S[Formula: see text] and S[Formula: see text] states. Here, the photoexcited system passes two crossing regions to return to the ground state. The electric dipole moment of the Schiff base in the S[Formula: see text] and S[Formula: see text] state differs strongly and, thus, its measurement allows for assessing the character of the excited-state potential. We apply the method of ultrafast terahertz (THz) Stark spectroscopy to measure electric dipole changes of wild-type BR and a BR D85T mutant upon electronic excitation. A fully reversible transient broadening and spectral shift of electronic absorption is induced by a picosecond THz field of several megavolts/cm and mapped by a 120-fs optical probe pulse. For both BR variants, we derive a moderate electric dipole change of 5 [Formula: see text] 1 Debye, which is markedly smaller than predicted for a neat S[Formula: see text]-character of the excited state. In contrast, S[Formula: see text]-admixture and temporal averaging of excited-state dynamics over the probe pulse duration gives a dipole change in line with experiment. Our results support a picture of electronic and nuclear dynamics governed by the interaction of S[Formula: see text] and S[Formula: see text] states in a 3-state model.
视紫红质(BR)反应循环的超快第一步是视黄醛 Schiff 碱的光致全反式到 13-顺式异构化。广泛的实验和理论工作已经解决了通过与基态的锥形交叉的激发态动力学和异构化。在相互矛盾的分子图像中,激发态势能面被建模为与基态相交的纯 S[Formula: see text]态,或者在涉及 S[Formula: see text]和 S[Formula: see text]态的 3 态图像中。在这里,光激发系统通过两个交叉区域返回基态。Schiff 碱在 S[Formula: see text]和 S[Formula: see text]态的电偶极矩差异很大,因此,其测量允许评估激发态势能的性质。我们应用超快太赫兹(THz)斯塔克光谱法测量野生型 BR 和 BR D85T 突变体在电子激发时的电偶极矩变化。皮秒 THz 场几兆瓦每厘米的电场诱导电子吸收的完全可逆瞬态展宽和光谱位移,并通过 120fs 光学探测脉冲进行映射。对于两种 BR 变体,我们得出电偶极矩的适度变化为 5 [Formula: see text] 1 德拜,这明显小于纯 S[Formula: see text]态激发态的预测值。相比之下,S[Formula: see text]混合和激发态动力学在探测脉冲持续时间内的时间平均给出了与实验一致的偶极矩变化。我们的结果支持电子和核动力学由 S[Formula: see text]和 S[Formula: see text]态相互作用控制的图像,该图像适用于 3 态模型。