Suppr超能文献

运用机制数学建模推进癌症药物研发:弥合理论与实践之间的差距。

Advancing cancer drug development with mechanistic mathematical modeling: bridging the gap between theory and practice.

机构信息

Novadiscovery, 1 Place Giovanni Verrazzano, 69009, Lyon, France.

Genmab US, Inc., 777 Scudders Mill Rd Bldg 2 4th Floor, Plainsboro, NJ, 08536, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2024 Dec;51(6):581-604. doi: 10.1007/s10928-024-09930-x. Epub 2024 Jun 21.

Abstract

Quantitative predictive modeling of cancer growth, progression, and individual response to therapy is a rapidly growing field. Researchers from mathematical modeling, systems biology, pharmaceutical industry, and regulatory bodies, are collaboratively working on predictive models that could be applied for drug development and, ultimately, the clinical management of cancer patients. A plethora of modeling paradigms and approaches have emerged, making it challenging to compile a comprehensive review across all subdisciplines. It is therefore critical to gauge fundamental design aspects against requirements, and weigh opportunities and limitations of the different model types. In this review, we discuss three fundamental types of cancer models: space-structured models, ecological models, and immune system focused models. For each type, it is our goal to illustrate which mechanisms contribute to variability and heterogeneity in cancer growth and response, so that the appropriate architecture and complexity of a new model becomes clearer. We present the main features addressed by each of the three exemplary modeling types through a subjective collection of literature and illustrative exercises to facilitate inspiration and exchange, with a focus on providing a didactic rather than exhaustive overview. We close by imagining a future multi-scale model design to impact critical decisions in oncology drug development.

摘要

癌症生长、进展和个体对治疗反应的定量预测建模是一个快速发展的领域。来自数学建模、系统生物学、制药行业和监管机构的研究人员正在合作开发预测模型,这些模型可应用于药物开发,并最终应用于癌症患者的临床管理。大量的建模范例和方法已经出现,使得在所有子学科中进行全面综述变得具有挑战性。因此,评估基本设计方面的要求,并权衡不同模型类型的机会和局限性至关重要。在这篇综述中,我们讨论了三种基本类型的癌症模型:空间结构模型、生态模型和免疫系统重点模型。对于每种类型,我们的目标是说明哪些机制导致癌症生长和反应的可变性和异质性,从而使新模型的适当架构和复杂性更加清晰。我们通过主观收集文献和说明性练习来展示这三种典型建模类型中的每一种所涉及的主要特征,以促进灵感和交流,重点是提供一种教学性而不是详尽的概述。最后,我们设想一个未来的多尺度模型设计,以影响肿瘤药物开发中的关键决策。

相似文献

1
Advancing cancer drug development with mechanistic mathematical modeling: bridging the gap between theory and practice.
J Pharmacokinet Pharmacodyn. 2024 Dec;51(6):581-604. doi: 10.1007/s10928-024-09930-x. Epub 2024 Jun 21.
2
Tumor Growth Dynamic Modeling in Oncology Drug Development and Regulatory Approval: Past, Present, and Future Opportunities.
CPT Pharmacometrics Syst Pharmacol. 2020 Aug;9(8):419-427. doi: 10.1002/psp4.12542. Epub 2020 Jul 22.
3
Introduction: Cancer Gene Networks.
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal a breast cancer.
Pharmacol Res. 2017 Oct;124:20-33. doi: 10.1016/j.phrs.2017.07.015. Epub 2017 Jul 19.
7
Quantitative Systems Pharmacology Approaches for Immuno-Oncology: Adding Virtual Patients to the Development Paradigm.
Clin Pharmacol Ther. 2021 Mar;109(3):605-618. doi: 10.1002/cpt.1987. Epub 2020 Aug 14.
8
QSP-IO: A Quantitative Systems Pharmacology Toolbox for Mechanistic Multiscale Modeling for Immuno-Oncology Applications.
CPT Pharmacometrics Syst Pharmacol. 2020 Sep;9(9):484-497. doi: 10.1002/psp4.12546. Epub 2020 Sep 7.
9
Quantitative Systems Pharmacology Models: Potential Tools for Advancing Drug Development for Rare Diseases.
Clin Pharmacol Ther. 2024 Dec;116(6):1442-1451. doi: 10.1002/cpt.3451. Epub 2024 Sep 28.
10
Boolean network modeling in systems pharmacology.
J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):159-180. doi: 10.1007/s10928-017-9567-4. Epub 2018 Jan 6.

引用本文的文献

1
Complex networks interactions between bioactive compounds and adipose tissue vis-à-vis insulin resistance.
Front Endocrinol (Lausanne). 2025 May 13;16:1578552. doi: 10.3389/fendo.2025.1578552. eCollection 2025.
2
Virtual Clinical Trial Reveals Significant Clinical Potential of Targeting Tumor-Associated Macrophages and Microglia to Treat Glioblastoma.
CPT Pharmacometrics Syst Pharmacol. 2025 Jul;14(7):1156-1167. doi: 10.1002/psp4.70033. Epub 2025 May 9.

本文引用的文献

4
Emulation of Quantitative Systems Pharmacology models to accelerate virtual population inference in immuno-oncology.
Methods. 2024 Mar;223:118-126. doi: 10.1016/j.ymeth.2023.12.006. Epub 2024 Jan 19.
5
Mechanical coupling coordinates microtubule growth.
Elife. 2023 Dec 27;12:RP89467. doi: 10.7554/eLife.89467.
7
Development of bispecific T cell engagers: harnessing quantitative systems pharmacology.
Trends Pharmacol Sci. 2023 Dec;44(12):880-890. doi: 10.1016/j.tips.2023.09.009. Epub 2023 Oct 17.
9
In Silico Clinical Trials: Is It Possible?
Methods Mol Biol. 2024;2716:51-99. doi: 10.1007/978-1-0716-3449-3_4.
10
Exploration of the antibody-drug conjugate clinical landscape.
MAbs. 2023 Jan-Dec;15(1):2229101. doi: 10.1080/19420862.2023.2229101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验