Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
Sci Adv. 2024 Jun 21;10(25):eado4722. doi: 10.1126/sciadv.ado4722.
Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically. This publication introduces the freestanding bilayer microscope (FBM), which combines the advantages of freestanding bilayers with single-particle tracking. The FBM, based on planar lipid bilayers, enables the study of IMP dynamics with single-molecule resolution and unconstrained diffusion. This paper benchmarks the FBM against total internal reflection fluorescence imaging on supported bilayers and is used here to estimate ion channel open probability and to examine the diffusion behavior of an ion channel in phase-separated bilayers. The FBM emerges as a powerful tool to examine membrane protein/lipid organization and dynamics to understand cell membrane processes.
整合膜蛋白(IMPs)构成了生物体系蛋白质组的很大一部分,在生理和疾病中发挥着重要作用。尽管它们很重要,但由于细胞膜环境的高度复杂性,IMP 动态特征(如异常扩散、蛋白质-蛋白质相互作用和蛋白质聚类)的机制在很大程度上仍然未知。现有的体外研究方法不足以系统地研究 IMP 动力学。本出版物介绍了独立双层显微镜(FBM),它结合了独立双层的优点和单颗粒跟踪。FBM 基于平面脂质双层,能够以单分子分辨率和不受限制的扩散研究 IMP 动力学。本文将 FBM 与支持双层的全内反射荧光成像进行了基准测试,并用于此处来估计离子通道的开放概率,并研究离子通道在相分离双层中的扩散行为。FBM 成为研究膜蛋白/脂质组织和动力学以了解细胞膜过程的强大工具。