Suppr超能文献

用于分析与细胞和基因治疗相关的大型核酸生物聚合物的组合水力和激流色谱中的保留机制。

Retention mechanism in combined hydrodynamic and slalom chromatography for analyzing large nucleic acid biopolymers relevant to cell and gene therapies.

机构信息

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.

出版信息

J Chromatogr A. 2024 Aug 16;1730:465075. doi: 10.1016/j.chroma.2024.465075. Epub 2024 Jun 21.

Abstract

Slalom chromatography (SC) was discovered in 1988 for analyzing double-stranded (ds) DNA. However, its progress was impeded by practical issues such as low-purity particles, sample loss, and lack of a clear retention mechanism. With the rise of cell and gene therapies and the availability today of bio-inert ultra-high-pressure liquid chromatography (UHPLC) columns and systems, SC has regained interest. In SC, the elution order is opposite to that observed in hydrodynamic chromatography (HDC): larger DNA molecules are more retained than small ones. Yet, the underlying SC retention mechanism remains elusive. We provide the physicochemical background necessary to explain, at a microscopic scale, the full transition from a HDC to a SC retention mechanism. This includes the persistence length of the DNA macromolecule (representing DNA stiffness), their relaxation time (τ) from the non-equilibrium contour length to the equilibrium entropic configuration, and the relationship between the mobile phase shear rate (〈γ̇〉) in packed columns and the DNA extended length. We propose a relevant retention model to account for the simultaneous impact of hydrodynamic chromatography (HDC) and SC on the retention factors of a series of large and linear dsDNAs (ranging from 2 to 48 kbp). SC data were acquired using bio-inert MaxPeak Columns packed with 1.7μm BEH 45 Å, 1.8μm BEH 125 Å, 2.4μm BEH 125 Å, 5.3μm BEH 125 Å, and 11.3μm BEH 125 Å Particles, an ACQUITY UPLC I-class PLUS System, and either 1 × PBS (pH 7.4) or 100 mM phosphate buffer (pH 8) as the mobile phase. SC is a non-equilibrium retention mode that is dominant when the Weissenberg number (Wi=〈γ̇〉τ) is much larger than 10 and the average extended length of DNA exceeds the particle diameter. HDC, on the other hand, is an equilibrium retention mode that dominates when Wi<1 (DNA chains remaining in their non-extended configuration). Maximum dsDNA resolution is observed in a mixed HDC-SC retention mode when the extended length of the DNA is approximately half the particle diameter. This work facilitates the development of methods for characterizing various plasmid DNA mixtures, containing linear, supercoiled, and relaxed circular dsDNAs which all have different degree of molecular stiffness.

摘要

胶束电动色谱(MEKC)于 1988 年被发现,用于分析双链 DNA(dsDNA)。然而,由于颗粒纯度低、样品损失以及缺乏明确的保留机制等实际问题,其发展受到了阻碍。随着细胞和基因治疗的兴起,以及今天生物惰性超高压力液相色谱(UHPLC)柱和系统的可用性,胶束电动色谱(MEKC)又重新受到关注。在胶束电动色谱(MEKC)中,洗脱顺序与动力色谱(hydrodynamic chromatography,HDC)相反:较大的 DNA 分子比小的分子保留时间更长。然而,其背后的胶束电动色谱(MEKC)保留机制仍然难以捉摸。我们提供了必要的物理化学背景知识,以便在微观尺度上解释从动力色谱(HDC)到胶束电动色谱(MEKC)保留机制的完全转变。这包括 DNA 大分子的持久长度(代表 DNA 刚性)、它们从非平衡轮廓长度到平衡熵构象的松弛时间(τ),以及填充柱中流动相剪切率(〈γ̇〉)与 DNA 延伸长度之间的关系。我们提出了一个相关的保留模型,以解释一系列大线性 dsDNA(范围从 2 到 48 kbp)的动力色谱(HDC)和胶束电动色谱(MEKC)对保留因子的同时影响。使用装有 1.7μm BEH 45Å、1.8μm BEH 125Å、2.4μm BEH 125Å、5.3μm BEH 125Å 和 11.3μm BEH 125Å 颗粒的生物惰性 MaxPeak 柱,ACQUITY UPLC I 级 PLUS 系统,以及 1×PBS(pH 7.4)或 100mM 磷酸盐缓冲液(pH 8)作为流动相,采集胶束电动色谱(MEKC)数据。当魏森贝格数(Wi=〈γ̇〉τ)远大于 10 且 DNA 的平均延伸长度超过颗粒直径时,胶束电动色谱(MEKC)是一种非平衡保留模式,处于主导地位。另一方面,当 Wi<1(DNA 链保持在非延伸状态)时,动力色谱(HDC)是一种平衡保留模式,处于主导地位。当 DNA 的延伸长度约为颗粒直径的一半时,在混合的动力色谱(HDC)-胶束电动色谱(MEKC)保留模式下可以观察到最大的 dsDNA 分辨率。这项工作有助于开发用于表征各种质粒 DNA 混合物的方法,这些混合物包含线性、超螺旋和松弛的圆形 dsDNA,它们都具有不同程度的分子刚性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验