King Ella M, Du Chrisy Xiyu, Zhu Qian-Ze, Schoenholz Samuel S, Brenner Michael P
Department of Physics, Harvard University, Cambridge, MA 02139.
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311891121. doi: 10.1073/pnas.2311891121. Epub 2024 Jun 24.
Direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. However, even incremental steps toward designing functional materials have proven challenging. If the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. On the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. Here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). We showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. By directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.
复杂功能材料的直接设计将彻底改变从可打印器官到新型清洁能源设备等一系列技术。然而,事实证明,即使朝着功能材料设计迈出渐进的步伐也具有挑战性。如果材料由高度复杂的组件构成,那么材料特性的设计空间很快就会变得在计算上过于昂贵而无法搜索。另一方面,诸如均匀球形颗粒之类的非常简单的组件又不足以捕捉丰富的功能行为。在此,我们引入一种可微材料设计模型,其组件足够简单以便于设计,但又足够强大以捕捉复杂的材料特性:由具有定向相互作用的球形颗粒组成的刚体(补丁颗粒)。我们通过从开放晶格到自限簇的自组装设计展示了该方法,所有这些都是使用纯各向同性颗粒实现起来极具挑战性的设计目标。通过使用梯度下降直接优化补丁颗粒上补丁的位置和相互作用,我们显著减少了找到最优构建块的计算时间。