Suppr超能文献

精准症状表型分析可识别不同新冠后遗症的早期临床和蛋白质组学预测指标。

Precision Symptom Phenotyping Identifies Early Clinical and Proteomic Predictors of Distinct COVID-19 Sequelae.

作者信息

Epsi Nusrat J, Chenoweth Josh G, Blair Paul W, Lindholm David A, Ganesan Anuradha, Lalani Tahaniyat, Smith Alfred, Mody Rupal M, Jones Milissa U, Colombo Rhonda E, Colombo Christopher J, Schofield Christina, Ewers Evan C, Larson Derek T, Berjohn Catherine M, Maves Ryan C, Fries Anthony C, Chang David, Wyatt Andrew, Scher Ann I, Byrne Celia, Rusiecki Jennifer, Saunders David L, Livezey Jeffrey, Malloy Allison, Bazan Samantha, Maldonado Carlos, Edwards Margaret Sanchez, Mende Katrin, Simons Mark P, O'Connell Robert J, Tribble David R, Agan Brian K, Burgess Timothy H, Pollett Simon D, Richard Stephanie A

机构信息

Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.

Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA.

出版信息

J Infect Dis. 2025 Jul 30;232(1):39-49. doi: 10.1093/infdis/jiae318.

Abstract

BACKGROUND

Post-COVID conditions (PCC) are difficult to characterize, diagnose, predict, and treat due to overlapping symptoms and poorly understood pathology. Identifying inflammatory profiles may improve clinical prognostication and trial endpoints.

METHODS

This analysis included 1988 SARS-CoV-2 positive U.S. Military Health System beneficiaries who had quantitative post-COVID symptom scores. Among participants who reported moderate-to-severe symptoms on surveys collected 6 months post-SARS-CoV-2 infection, principal component analysis followed by k-means clustering identified distinct clusters of symptoms.

RESULTS

Three symptom-based clusters were identified: a sensory cluster (loss of smell and/or taste), a fatigue/difficulty thinking cluster, and a difficulty breathing/exercise intolerance cluster. Individuals within the sensory cluster were all outpatients during their initial COVID-19 presentation. The difficulty breathing cluster had a higher likelihood of obesity and COVID-19 hospitalization than those with no/mild symptoms at 6 months post-infection. Multinomial regression linked early post-infection D-dimer and IL-1RA elevation to fatigue/difficulty thinking and elevated ICAM-1 concentrations to sensory symptoms.

CONCLUSIONS

We identified three distinct symptom-based PCC phenotypes with specific clinical risk factors and early post-infection inflammatory predictors. With further validation and characterization, this framework may allow more precise classification of PCC cases and potentially improve the diagnosis, prognostication, and treatment of PCC.

摘要

背景

由于症状重叠且病理机制尚不清楚,新冠后状况(PCC)难以进行特征描述、诊断、预测和治疗。识别炎症特征可能会改善临床预后和试验终点。

方法

本分析纳入了1988名美国军事卫生系统中新冠病毒2型(SARS-CoV-2)检测呈阳性且有新冠后症状定量评分的受益者。在新冠病毒2型感染6个月后收集的调查中报告有中度至重度症状的参与者中,通过主成分分析和k均值聚类确定了不同的症状簇。

结果

确定了三个基于症状的簇:一个感觉簇(嗅觉和/或味觉丧失)、一个疲劳/思维困难簇和一个呼吸困难/运动不耐受簇。感觉簇中的个体在初次感染新冠病毒时均为门诊患者。与感染6个月后无/轻度症状的人相比,呼吸困难簇的人肥胖和因新冠病毒住院的可能性更高。多项回归分析表明,感染后早期D-二聚体和白细胞介素-1受体拮抗剂(IL-1RA)升高与疲劳/思维困难相关,细胞间黏附分子-1(ICAM-1)浓度升高与感觉症状相关。

结论

我们确定了三种不同的基于症状的PCC表型,具有特定的临床风险因素和感染后早期炎症预测指标。经过进一步验证和特征描述,该框架可能会使PCC病例的分类更加精确,并有可能改善PCC的诊断、预后和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d9f/12308661/a22c53b77a48/jiae318f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验