Dasman Diabetes Institute, Dasman 15462, Kuwait.
Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France.
Nutrients. 2024 Jun 18;16(12):1929. doi: 10.3390/nu16121929.
High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD).
C57BL/6 mice (5-6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. , and were highly abundant in C-HFD group, while the , (TM7), , and were more abundant in F-HFD group. Other taxa in C-HFD group included the (AF12), and An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (), Fatty acid synthase (), Stearoyl-CoA desaturase-1 (), Elongation of long-chain fatty acids family member 6 (), Peroxisome proliferator-activated receptor-gamma () and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (), Fatty acid binding protein-1 () and efflux (ATP-binding cassette G1 (), Microsomal TG transfer protein () in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (), C-C motif chemokine ligand 2 (), and Interleukin-12 (), as well as a tendency for liver fibrosis.
These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance.
高脂肪饮食会导致肠道菌群失调,促进甘油三酯积累、肥胖、肠道通透性改变、炎症和胰岛素抵抗。可可脂和鱼油都被认为是健康饮食的一部分。然而,它们在没有蔗糖的情况下对高脂肪饮食喂养的小鼠肠道微生物组扰动的差异影响仍有待阐明。本研究的目的是测试在没有蔗糖的情况下,以可可脂为基础的高脂肪饮食(C-HFD)喂养是否会导致肠道菌群失调,与以鱼油为基础的高脂肪饮食(F-HFD)喂养的对照组小鼠相比,这种肠道菌群失调与肝脂肪变性、低度炎症、葡萄糖稳态紊乱和胰岛素抵抗相关的病理表型相关。
将 C57BL/6 小鼠(每组 5-6 只)用两种高脂肪饮食(C-HFD 和 F-HFD)喂养 24 周。两组间肝重或体重无显著差异。肠道细菌样本的 16S rRNA 测序显示 C-HFD 组存在肠道菌群失调,微生物多样性或相对丰度发生差异变化。C-HFD 组中,、和高度丰富,而 F-HFD 组中、(TM7)、和更丰富。C-HFD 组的其他分类群包括、和 与 F-HFD 组相比,C-HFD 组中厚壁菌门/拟杆菌门(Firmicutes/Bacteroidetes,F/B)比值升高,表明肠道菌群失调。C-HFD 组的这些肠道细菌变化与脂肪肝疾病以及脂肪生成、炎症、葡萄糖代谢和胰岛素信号通路相关。与微生物组变化一致,C-HFD 组显示肝脏炎症和脂肪变性、空腹血糖升高、胰岛素抵抗、肝从头脂肪生成增加(乙酰辅酶 A 羧化酶 1()、脂肪酸合成酶()、硬脂酰辅酶 A 去饱和酶-1()、长链脂肪酸延伸家族成员 6()、过氧化物酶体增殖物激活受体-γ()和胆固醇合成(β-羟-β-甲基戊二酰辅酶 A 还原酶()。与 F-HFD 组相比,C-HFD 组脂肪酸摄取(分化群 36()、脂肪酸结合蛋白-1()和外排(ATP 结合盒 G1()、微粒体甘油三酯转移蛋白()没有显著差异。C-HFD 组还显示炎症标志物包括肿瘤坏死因子-α()、C-C 基序趋化因子配体 2()和白细胞介素-12()的基因表达增加,以及肝脏纤维化的趋势。
这些发现表明,在没有蔗糖的情况下,C-HFD 喂养会导致肠道菌群失调,与肝脏炎症、脂肪变性、葡萄糖不耐受和胰岛素抵抗相关。