Kang Mijeong, Kim Donghyeon, Kim Jihee, Kim Nakyung, Lee Seunghun
Department of Optics and Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
Sensors (Basel). 2024 Jun 14;24(12):3855. doi: 10.3390/s24123855.
In this review, recent advances regarding the integration of machine learning into electrochemical analysis are overviewed, focusing on the strategies to increase the analytical context of electrochemical data for enhanced machine learning applications. While information-rich electrochemical data offer great potential for machine learning applications, limitations arise when sensors struggle to identify or quantitatively detect target substances in a complex matrix of non-target substances. Advanced machine learning techniques are crucial, but equally important is the development of methods to ensure that electrochemical systems can generate data with reasonable variations across different targets or the different concentrations of a single target. We discuss five strategies developed for building such electrochemical systems, employed in the steps of preparing sensing electrodes, recording signals, and analyzing data. In addition, we explore approaches for acquiring and augmenting the datasets used to train and validate machine learning models. Through these insights, we aim to inspire researchers to fully leverage the potential of machine learning in electroanalytical science.
在本综述中,概述了机器学习融入电化学分析的最新进展,重点关注增加电化学数据的分析背景以增强机器学习应用的策略。虽然信息丰富的电化学数据为机器学习应用提供了巨大潜力,但当传感器难以在复杂的非目标物质基质中识别或定量检测目标物质时,就会出现局限性。先进的机器学习技术至关重要,但同样重要的是开发方法,以确保电化学系统能够生成在不同目标或单一目标的不同浓度之间具有合理变化的数据。我们讨论了为构建此类电化学系统而开发的五种策略,这些策略应用于制备传感电极、记录信号和分析数据的步骤中。此外,我们还探索了获取和扩充用于训练和验证机器学习模型的数据集的方法。通过这些见解,我们旨在激励研究人员充分利用机器学习在电分析科学中的潜力。