Suppr超能文献

多模态可解释人工智能识别出患有非缺血性心肌病且有致命性室性心律失常风险的患者。

Multimodal explainable artificial intelligence identifies patients with non-ischaemic cardiomyopathy at risk of lethal ventricular arrhythmias.

机构信息

Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.

Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2024 Jun 27;14(1):14889. doi: 10.1038/s41598-024-65357-x.

Abstract

The efficacy of an implantable cardioverter-defibrillator (ICD) in patients with a non-ischaemic cardiomyopathy for primary prevention of sudden cardiac death is increasingly debated. We developed a multimodal deep learning model for arrhythmic risk prediction that integrated late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI), electrocardiography (ECG) and clinical data. Short-axis LGE-MRI scans and 12-lead ECGs were retrospectively collected from a cohort of 289 patients prior to ICD implantation, across two tertiary hospitals. A residual variational autoencoder was developed to extract physiological features from LGE-MRI and ECG, and used as inputs for a machine learning model (DEEP RISK) to predict malignant ventricular arrhythmia onset. In the validation cohort, the multimodal DEEP RISK model predicted malignant ventricular arrhythmias with an area under the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval (CI) 0.71-0.96), a sensitivity of 0.98 (95% CI 0.75-1.00) and a specificity of 0.73 (95% CI 0.58-0.97). The models trained on individual modalities exhibited lower AUROC values compared to DEEP RISK [MRI branch: 0.80 (95% CI 0.65-0.94), ECG branch: 0.54 (95% CI 0.26-0.82), Clinical branch: 0.64 (95% CI 0.39-0.87)]. These results suggest that a multimodal model achieves high prognostic accuracy in predicting ventricular arrhythmias in a cohort of patients with non-ischaemic systolic heart failure, using data collected prior to ICD implantation.

摘要

植入式心脏复律除颤器 (ICD) 在非缺血性心肌病患者中的一级预防心源性猝死的疗效越来越受到争议。我们开发了一种多模态深度学习模型,用于心律失常风险预测,该模型整合了晚期钆增强 (LGE) 心脏磁共振成像 (MRI)、心电图 (ECG) 和临床数据。在两家三级医院,我们回顾性地收集了 289 例在 ICD 植入前的患者的短轴 LGE-MRI 扫描和 12 导联 ECG。一个残差变分自动编码器被开发出来,从 LGE-MRI 和 ECG 中提取生理特征,并作为机器学习模型 (DEEP RISK) 的输入,以预测恶性室性心律失常的发作。在验证队列中,多模态 DEEP RISK 模型预测恶性室性心律失常的曲线下面积 (AUROC) 为 0.84(95%置信区间 [CI] 0.71-0.96),敏感性为 0.98(95%CI 0.75-1.00),特异性为 0.73(95%CI 0.58-0.97)。与 DEEP RISK 相比,基于单一模态训练的模型的 AUROC 值较低[MRI 分支:0.80(95%CI 0.65-0.94),ECG 分支:0.54(95%CI 0.26-0.82),临床分支:0.64(95%CI 0.39-0.87)]。这些结果表明,在一个非缺血性收缩性心力衰竭患者队列中,使用 ICD 植入前收集的数据,多模态模型在预测室性心律失常方面具有较高的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0825/11211323/b0c6988944c2/41598_2024_65357_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验